Site Map
Contacts
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

Darwin - A Mission to Detect and Search for Life on Extrasolar Planets

C. S Cockell, A. Léger, M. Fridlund, T. M. Herbst, L. Kaltenegger, O. Absil, C. Beichman, W. Benz, M. Blanc, A. Brack, A. Chelli, L. Colangeli, H. Cottin, F. Coudé du Foresto, W. C. Danchi, D. Defrère, J.-W. den Herder, C. Eiroa, J. Greaves, T. Henning, K. J. Johnston, H. Jones, L. Labadie, H. Lammer, R. Launhardt, P. Lawson, O. P. Lay, J.-M. LeDuigou, R. Liseau, F. Malbet, S. R. Martin, D. Mawet, D. Mourard, C. Moutou, L. M. Mugnier, M. Ollivier, F. Paresce, A. Quirrenbach, Y. D. Rabbia, J. A. Raven, H. J. A. Röttgering, D. Rouan, N. C. Santos, F. Selsis, E. Serabyn, H. Shibai, M. Tamura, E. Thiébaut, F. Westall, G. J. White

Abstract
The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In this paper, we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extra-solar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines, including astrophysics, planetary sciences, chemistry, and microbiology. Darwin is designed to detect rocky planets similar to Earth and perform spectroscopic analysis at mid-infrared wavelengths (6-20 µm), where an advantageous contrast ratio between star and planet occurs. The baseline mission is projected to last 5 years and consists of approximately 200 individual target stars. Among these, 25-50 planetary systems can be studied spectroscopically, which will include the search for gases such as CO2, H2O, CH4, and O3. Many of the key technologies required for the construction of Darwin have already been demonstrated, and the remainder are estimated to be mature in the near future. Darwin is a mission that will ignite intense interest in both the research community and the wider public.

Keywords
Darwin—Extrasolar planets—Orbital tele- scopes—M stars—Earth-like planets—Interferometry. Astrobiology

Astrobiology
Volume 9, Page 1
February 2009

>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website