![]()
Preheating with the Brakes On: The Effects of a Speed Limit We study preheating in models where the inflaton has a non-canonical kinetic term, containing powers of the usual kinetic energy. The inflaton field oscillating about its potential minimum acts as a driving force for particle production through parametric resonance. Non-canonical kinetic terms can impose a speed limit on the motion of the inflaton, modifying the oscillating inflaton profile. This has two important effects: it turns a smooth sinusoidal profile into a sharp saw-tooth, enhancing resonance, and it lengthens the period of oscillations, suppressing resonance. We show that the second effect dominates over the first, so that preheating with a non-canonical inflaton field is less efficient than with canonical kinetic terms, and that the expansion of the Universe suppresses resonance even further. |
We use cookies to ensure that you get the best experience on our website, by continuing on this website you agree to the storing of cookies on your device. Learn more about our Privacy Policy .