Site Map
Contacts
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto
Confronting the Dark Energy Equation of State with the Fundamental Constant μ, the Proton to Electron Mass Ratio

Rodger I. Thompson
Steward Observatory, University of Arizona

Abstract
One of the 12 challenges presented at the most recent Texas Symposium on Relativistic Astrophysics was: What is the dark energy equation of state versus redshift? The values of the fundamental constants such as µ=mP/me the proton to electron mass ratio and α, the fine structure constant, are sensitive to the dark energy equation of state w. The rate of change of the fundamental constants is proportional to the product √ζ2(w+1) where ζ is a coupling constant between a rolling scalar field responsible for the acceleration of the expansion of the universe and the electromagnetic field with x standing for the particular fundamental constant such as µ or α. In standard ΛCDM w is a constant, -1, which predicts no changes in the constants and in the standard model of physics ζ is 0 again resulting in no change. In cosmologies, however, where the acceleration of expansion is due to a dynamical scalar field w takes on values different than -1 and the scalar field couples with the electromagnetic field to produce a non-zero ζ. In this case the values of the fundamental constants monitor the equation of state and are a valuable tool in answering the question what w is as a function of redshift. The dark energy equation of state is often given in parameterized form for comparison with observations. In this talk the predicted evolution of µ, is calculated for a range of parameterized equation of state models and compared to the observational constraints on Δµ/µ. We find that the current limits on Δµ/µ place significant constraints on the linear equation of state models and on thawing models were w deviates from -1 at late times. They also even constrain non-dynamical models that have a constant w not equal to -1. These constraints are an important compliment to geometric tests of w in that geometric tests are sensitive to the evolution of the universe before the observation while fundamental constants are sensitive to the evolution of the universe after the observation. Recent low redshift radio limits on Δµ/µ provide the most significant constraints on the late time evolution of w. Improvements in the accuracy of optical limits on Δµ/µ at high redshift will be invaluable in placing similar constraints on the early evolution of w.

15 July 2013, 13:30

Centro de Astrofísica
Rua das Estrelas
4150-762 Porto

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website