Site Map
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

Planetary detection limits taking into account stellar noise
II. Effect of stellar spot groups on radial-velocities

X. Dumusque, N. C. Santos, S. Udry, C. Lovis, X. Bonfils

Context. The detection of small mass planets with the radial-velocity technique is now confronted with the interference of stellar noise. HARPS can now reach a precision below the meter-per-second, which corresponds to the amplitudes of different stellar perturbations, such as oscillation, granulation, and activity.
Aims. Solar spot groups induced by activity produce a radial-velocity noise of a few meter-per-second. The aim of this paper is to simulate this activity and calculate detection limits according to different observational strategies.
Methods. Based on Sun observations, we reproduce the evolution of spot groups on the surface of a rotating star. We then calculate the radial-velocity effect induced by these spot groups as a function of time. Taking into account oscillation, granulation, activity, and a HARPS instrumental error of 80 cm s-1, we simulate the effect of different observational strategies in order to efficiently reduce all sources of noise.
Results. Applying three measurements per night of 10 minutes every three days, 10 nights a month seems the best tested strategy. Depending on the level of activity considered, from log R'HK = -5 to -4.75, this strategy would allow us to find planets of 2.5 to 3.5M in the habitable zone of a K1V dwarf. Using Bern’s model of planetary formation, we estimate that for the same range of activity level, 15 to 35% of the planets between 1 and 5M and with a period between 100 and 200 days should be found with HARPS. A comparison between the performance of HARPS and ESPRESSO is also emphasized by our simulations. Using the same optimized strategy, ESPRESSO could find 1.3M planets in the habitable zone of K dwarfs. In addition, 80% of planets with mass between 1 and 5M and with a period between 100 and 200 days could be detected.

stars: individual: α Cen B - planetary systems - stars: activity - Sun: activity - sunspots - techniques: radial velocities

See The Extrasolar Planets Encyclopaedia,

Astronomy and Astrophysics
Volume 527, Page A82_1
March 2011

>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website