Site Map
Contacts
Follow us on Facebook Follow us on Twitter YouTube channel Follow us on Google+

Carlos J. A. P. Martins
Researcher

Head,
Training Unit, Centro de Astrofísica da Universidade do Porto

Investigador Coordenador,
Investigador FCT, Fundação para a Ciência e a Tecnologia
IF/00064/2012/CP0150/CT0001

Phone
+351 226 089 891

Email
Carlos.Martins@astro.up.pt

Office
211

Phone extension
230

Biographic notes

My research is in fundamental cosmology and particle astrophysics. Specifically I'm interested in precision consistency tests of the standard cosmological paradigm and in astrophysical searches for new physics. The observational evidence for the acceleration of the universe demonstrates that our current theories of particle physics and gravity are incomplete. Current hints of new physics are smoke without a smoking gun, and I am searching for the for the gun; in other words, I'm using the early universe as a laboratory where I can probe fundamental physics.

I'm actively involved in measurements of nature’s fundamental couplings on various astrophysical and cosmological scales and epochs. I'm also developing the next generation of tests, including astrophysical Equivalence Principle tests, measurements of the temperature-redshift relation and the distance duality relation, and tests involving specific astrophysical objects (such as main sequence stars and neutron stars). I'm a member of the ESPRESSO collaboration; this will be the first of a new generation of spectrographs sensitive enough to carry out some of these tests. I also belong to the E-ELT Project Science Team.

I'm interested in developing new ways to characterize the properties of dark energy from redshift z=0 until deep in the matter era (z~4 and beyond), since this maximizes the chances of distinguishing dynamical dark energy from Einstein's cosmological constant. Astrophysical measurements such as those described above will be crucial for this endeavour. I'm also interested in exploring synergies between space missions like Euclid (of which I am also a member) and ground-based facilities such as ALMA, ESPRESSO and the E-ELT instruments (particularly ELT-HIRES) for the purpose of probing fundamental physics and the large-scale behaviour of gravity.

I have a long-term interest in the evolution and cosmological consequences of topological defect networks. I have developed the now canonical analytic evolution model during my PhD, but subsequently I have also carried out the largest and most systematic numerical studies of these networks. My current interests here focus on understanding the differences in the evolution of networks with additional degrees of freedom (such as currents or a hierarchy of tensions) as compared to the standard networks, and in obtaining reliable predictions for the observational consequences of these networks.

I'm strongly committed to the public understanding of science, and in particular to outreach in astronomy and physics. I’m currently the Head of CAUP’s training unit, and the scientific coordinator of the AstroCamp, an academic excellence program for high-school students. I also maintain an active interest in the history of ideas in astronomy and cosmology.

Publications
ADS
Lastest CAUP publications
M. Martinelli, E. Calabrese, C. J. A. P. Martins, 2015,
E-ELT constraints on runaway dilaton scenarios,
Journal of Cosmology and Astroparticle Physics, 11, 030-
A. C. O. Leite, C. J. A. P. Martins, 2015,
Fundamental cosmology from precision spectroscopy. II. Synergies with supernovae,
Physical Review D, 91, 103519-
C. J. A. P. Martins, A. M. M. Pinho, R. F. C. Alves, M. Pino, C. I. S. A. Rocha, M. von Wietersheim, 2015,
Dark energy and equivalence principle constraints from astrophysical tests of the stability of the fine-structure constant,
Journal of Cosmology and Astroparticle Physics, 08, 047-
A. Lazanu, C. J. A. P. Martins, E. P. S. Shellard, 2015,
Contribution of domain wall networks to the CMB power spectrum,
Physics Letters B, 747, 426-432
M. C. Ferreira, C. J. A. P. Martins, 2015,
Further consistency tests of the stability of fundamental couplings,
Physical Review D, 91, 124032_1-124032_8
G. Luzzi, R. T. Génova-Santos, C. J. A. P. Martins, M. de Petris, L Lamagna, 2015,
Constraining the evolution of the CMB temperature with SZ measurements from Planck data,
Journal of Cosmology and Astroparticle Physics, 09, 011-
I. de Martino, R. T. Génova-Santos, F. Atrio-Barandela, H. Ebeling, A. Kashlinsky, D. Kocevski, C. J. A. P. Martins, 2015,
Constraining the Redshift Evolution of the Cosmic Microwave Background Blackbody Temperature with PLANCK Data,
The Astrophysical Journal, 808, 128-
C. J. A. P. Martins, P. E. Vielzeuf, M. Martinelli, E. Calabrese, S. Pandolfi, 2015,
Evolution of the fine-structure constant in runaway dilaton models,
Physics Letters B, 743, 377-382
S. M. João, C. J. A. P. Martins, I. S. A. B. Mota, P. M. T. Vianez, 2015,
On the stability of fundamental couplings in the Galaxy,
Physics Letters B, 749, 389-392
C. J. A. P. Martins, A. M. M. Pinho, 2015,
Fine-structure constant constraints on dark energy,
Physical Review D, 91, 103501-