Site Map
Contacts
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

The Hα line forming region of AB Aurigae spatially resolved at sub-AU with the VEGA/CHARA spectro-interferometer

K. Rousselet-Perraut, M. Benisty, D. Mourard, S. Rajabi, F. Bacciotti, P. Bério, D. Bonneau, O. Chesneau, J.-M. Clausse, O. Delaa, A. Marcotto, A. Roussel, A. Spang, P. Stee, I. Tallon-Bosc, H. McAlister, T. A. ten Brummelaar, J. Sturmann, L. Sturmann, N. Turner, C. Farrington, P.J. Goldfinger

Abstract
Context. A crucial issue in star formation is to understand the physical mechanism by which mass is accreted onto and ejected by a young star. To derive key constraints on the launching point of the jets and on the geometry of the winds, the visible spectropolarimeter VEGA installed on the CHARA optical array can be an efficient means of probing the structure and the kinematics of the hot circumstellar gas at sub-AU.
Aims. For the first time, we observed the Herbig Ae star AB Aur in the Hα emission line, using the VEGA low spectral resolution (R = 1700) on two baselines of the array.
Methods. We computed and calibrated the spectral visibilities of AB Aur between 610 nm and 700 nm in spectral bands of 20.4 nm. To simultaneously reproduce the line profile and the inferred visibility around Ha, we used a 1D radiative transfer code (RAMIDUS/PROFILER) that calculates level populations for hydrogen atoms in a spherical geometry and that produces synthetic spectro-interferometric observables.
Results. We clearly resolved AB Aur in the Hα line and in a part of the continuum, even at the smallest baseline of 34 m. The small P-Cygni absorption feature is indicative of an outflow but could not be explained by a spherical stellar wind model. Instead, it favors a magneto-centrifugal X-disk or disk-wind geometry. The fit of the spectral visibilities from 610 to 700 nm could not be accounted for by a wind alone, so another component inducing a visibility modulation around Hα needed to be considered. We thus considered a brightness asymmetry possibly caused by large-scale nebulosity or by the known spiral structures.
Conclusions. Thanks to the unique capabilities of VEGA, we managed to simultaneously record for the first time a spectrum at a resolution of 1700 and spectral visibilities in the visible range on a target as faint as mV = 7.1. It was possible to rule out a spherical geometry for the wind of AB Aur and provide realistic solutions to account for the Hα emission compatible with magneto-centrifugal acceleration. It was difficult, however, to determine the exact morphology of the wind because of the surrounding asymmetric nebulosity. The study illustrates the advantages of optical interferometry and motivates observations of other bright young stars in the same way to shed light on the accretion/ejection processes.

Keywords
methods: observational - techniques: high angular resolution - techniques: interferometric - circumstellar matter - stars: individual: AB Aur - stars: emission-line, Be

Astronomy and Astrophysics
Volume 516, Page L1_1
June 2010

>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website