Star-planet connection:
The role of stellar metallicity

Vardan Adibekyan
Centro de Astrofísica da Universidade do Porto
Instituto de Astrofísica e Ciências do Espaço

18 September 2014
Porto, Portugal
1. Planet formation and metallicity
 - Giant planets
 - Low-mass planets
 - Planets around evolved stars

2. Planet formation: Importance of other elements
 - Heavy elements in the metal-poor regime
 - Chemical peculiarities and planets

3. Planet architecture and metallicity
 - Metallicity in the mass-period diagram
 - Orbital eccentricity and metallicity

4. Conclusion
Giant planets

![Figure](http://example.com/figure.png)

Figure: From Santos et al. 2004 (left) and from Sousa et al. 2011 (right).
Is the planet formation mechanism the same at low and high metallicities?

A flat tail for low metallicities?

Santos et al. (2004); Udry & Santos (2007)

A simple power-law?

Johnson et al. (2010)
Giant planets - metallicity: the functional form

Bayesian analysis with different functional forms
Flat or exponential - no statistical difference. Mortier et al. 2013a
No correlation found for Super-Earth/Neptune-like planets?

e.g. Sousa et al. 2011, Mayor et al. 2011, Buchhave et al. 2012

Figure: From Sousa et al. 2011 (left) and from Buchhave et al. 2012 (right).
Small-size planets: Boundary at $\sim 2R_E$?

No correlation found ONLY for planets with $R_P < 2R_E$

Figure: Wang & Fischer 2013
Small-size planets: Boundary at \(\sim 2R_E \)?

Three size regimes of exoplanets: Boundaries at 1.7\(R_E \) and 3.9\(R_E \)

Metallicity controls the structure of planetary systems.

<table>
<thead>
<tr>
<th>Small-size planets: Boundary at (\sim 2R_E)?</th>
<th>Three size regimes of exoplanets: Boundaries at 1.7(R_E) and 3.9(R_E)</th>
<th>Metallicity controls the structure of planetary systems.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three distinct populations of planets with different metallicities.</td>
<td>(R_P < 1.7R_E) - terrestrial-like planets</td>
<td>(1.7R_E < R_P < 3.9R_E) - gas dwarf planets with rocky cores</td>
</tr>
<tr>
<td>(R_P > 3.9R_E) - ice or gas giant planets</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure: Buchhave et al. 2014
Evolved stars with giant planets

No metallicity correlation?

- Evidence for planet engulfment? \((\text{Pasquini et al. 2007})\)
- A mass effect? \((\text{Ghezzi et al. 2010})\)
- A spectroscopic analysis issue? \((\text{Hekker & Meléndez 2007; Santos et al. 2009})\)

There is a correlation after all? \((\text{Quirrenbach et al. 2011})\)

Figure: Mortier et al. 2013b.
Evolved stars with giant planets

A selection bias? (Mortier et al. 2013b).

Missing metal-rich stars in the giant star sample from (giant) planet search programs due to B-V cuts.

Giant planet hosts
Are stars with planets chemically different?

Iron content is usually used as a proxy of overall metallicity. What about other elements?

Previous studies yielded contradictory results

- Most studies found no systematic difference in abundances
 (Takeda 2007; Bond et al. 2008; Neves et al. 2009; Delgado Mena et al. 2010)

- Possible enrichment in some species
 (Bodaghee et al. 2003; Robinson et al. 2006; Brugamyer et al. 2011; Kang et al. 2011)
Refractory elements

Figure: $[X/Fe]$ vs. $[Fe/H]$ for HARPS sample. Adibekyan et al. 2012a.

Element enhancement of planet hosts

Mg, Ti, Si, Sc, and Al at $[Fe/H] \lesssim -0.2$ dex
Planet formation and metallicity

Other elements

P-M and [Fe/H]

Conclusion

α-elements

Figure: HARPS + Kepler samples. Adibekyan et al. 2012b.
Planet formation and metallicity

Other elements

P-M and [Fe/H]

Conclusion

α-elements

Figure: HARPS + Kepler samples. Adibekyan et al. 2012b.
In the iron-poor regime other metals are critical for planet formation.

Even (especially?) for low-mass planet formation.
[Fe/H] ≠ [M/H] at low-iron regime: Galactic chemical evolution
Planet frequency and [Ref] index

[Ref] - the mass abundances of Mg, Si and Fe relative to the Sun

Figure: Gonzalez 2014.
Planet frequency and [Ref] index

[Ref] - the mass abundances of Mg, Si and Fe relative to the Sun

What about oxygen?

Figure: Gonzalez 2014.
Are all the chemical peculiarities observed in planet host stars related to planet formation?
Lithium: star-planet connection is bidirectional

Figure: Li vs. T_{eff} (Israelian et al. 2009).

Figure: Li vs. T_{eff} (Delgado Mena et al 2014).

Stars that host planets are mostly Li-depleted

- The presence of a planet (planetary disc) may produce extra mixing
- An extra Li depletion through violent accretion-burst episodes of planetary material
Lithium: star-planet connection is bidirectional

A bias in the [Fe/H] and age distribution of the samples? (Baumann et al. 2010; Ghezzi et al. 2010; Ramirez et al. 2012)

Stars that host planets are mostly Li-depleted

- The presence of a planet (planetary disc) may produce extra mixing
- An extra Li depletion through violent accretion-burst episodes of planetary material
Lithium: star-planet connection is bidirectional

Planet-host stars exhibit enhanced lithium depletion when compared with non-host stars (after removing the effects of other parameters). (Figueira et al. 2014)

The presence of a planet (planetary disc) may produce extra mixing

An extra Li depletion through violent accretion-burst episodes of planetary material

Stars that host planets are mostly Li-depleted
Anomalous volatile-to-refractory ratio of the Sun compared to solar twins. **Refractories remained in rocky planets** (Ramirez et al. 2009, 2010).
No peculiar abundance ratio

Stars with and without planets show similar mean abundance ratios.

No evidence of relation between volatile-to-refractory abundance ratio and presence of rocky planets (González Hernández et al. 2010, 2013).

Anomalous volatile-to-refractory ratio of the Sun compared to solar twins.

Refractories remained in rocky planets (Ramirez et al. 2009, 2010).

Figure: From Melendez et al. 2009.
Tc slope and stellar age

Figure: Tc slope vs. stellar age. Adibekyan et al. 2014.

Tc slope strongly correlates with the stellar age: Older stars show lower refractory-to-volatile ratio. Most planet hosts are “old.”

Same trend is seen with galactic birth radius: Stars with smaller Rmean show larger Tc slopes. Most planet hosts have “smaller” Rmean.

Galactic birth place and age are determinant to establish Tc slopes. Tc slope trends: no direct relation with presence of planets?
Tc slope strongly correlates with the stellar age: Older stars show lower refractory-to-volatile ratio. Most planet hosts are “old”.

Same trend is seen with galactic birth radius: Stars with smaller Rmean show larger Tc slopes. Most planet hosts have “smaller” Rmean.

Figure: Tc slope vs. stellar age. Adibekyan et al. 2014.

Galactic birth place and age are determinant to establish Tc slopes. Tc slope trends: no direct relation with presence of planets?
Planet formation and metallicity

Other elements

P-M and [Fe/H]

Conclusion

Planet architecture and metallicity...
Metallicity in the mass-period diagram

Figure: Beaugé & Nesvorníy (2013)

Kepler data:
A lack of $R \lesssim 4R_\oplus$ planets with periods $P < 5$ days around metal-poor stars

Small planets around metal-poor stars do not migrate far. Disk migration?
P-M$_P$ diagram and [Fe/H] with SWEET-Cat: Earth-like planets

Figure: P-M$_P$ from Adibekyan et al. 2013.

RV and Transit: Contradiction

No metal-rich planet with long period

Detection bias?

If not, then
- Metal-rich systems ordinarily migrate
- Always form close to their parent stars (Is there enough material?)
P-M$_{\text{P}}$ diagram and [Fe/H] with SWEET-Cat

Planets around metal-poor stars

Have longer periods than planets around metal-rich stars ($\approx10M_\oplus < M_P < \approx4M_{\text{Jup}}$).

- Form farther out
- Form later and do not have time to migrate far

Giant planets show long periods (>100 days)

- Migration is less rapid than assumed

Figure: P-M$_{\text{P}}$ from Adibekyan et al. 2013.
Close-in giant planets orbiting metal-poor stars have lower eccentricities than those orbiting metal-rich stars.
Close-in giant planets orbiting metal-poor stars have lower eccentricities than those orbiting metal-rich stars.

Effect of planet-planet scattering? or Disk interaction? Tsang et al. 2014

Figure: Dawson & Murray-Clay (2013)
Conclusion

Metallicity and planet formation

Metallicity is an important factor for planet formation

- Elements other than iron are also important for planet formation
 Are all the elements equally important?
- Even low-mass/small-size planets need metals to form
 Which metals do they need?

Metallicity and planet evolution

- Metallicity also influences planet architecture
 Imposes new constraints in the models
How to Build a Planet: Heavy Metals Are Key Ingredients

Nola Taylor Redd, SPACE.com Contributor | August 23, 2012 07:24pm ET

Heavy metal rules

See? I've been trying to tell my mom since I was a teenager that "heavy metal rules."

There was a previous study that showed low mass earth sized planets can develope easily around stars
Questions?

Thank you!