Radial Velocities in the Infra-Red

Results from a first CRIRES campaign

Pedro Figueira, Observatoire de Genève

TOE, 19th October 2009
Exploring the near-IR

Measuring RVs in the near-IR is interesting to:

- Observe optically faint M dwarfs;
- Explore a favorable planet-to-star contrast;
- Reduce spot’s effect on RV.

but there are some technical issues to overcome...

- Detector Properties (CMOS vs CCD);
- Atmospheric Transmission;
- Establishment of a reliable wav. calib.
Exploring the near-IR

Measuring RVs in the near-IR is interesting to:

- Observe optically faint M dwarfs;
- Explore a favorable planet-to-star contrast;
- Reduce spot’s effect on RV.

but there are some technical issues to overcome...

- Detector Properties (CMOS vs CCD);
- Atmospheric Transmission;
- Establishment of a reliable wav. calib.
Spots mimicking Planets

Stellar line deformation creates a RV signal!
Spots mimicking Planets

Bisector measures the line profile and can be used to identify spots’ effect

Detectability of bisector variation decreases faster than the impact of line asymmetries on RV (Sahar & Donahue 1992)

Photometry and Ca II indicators can be used too but **none** of the three is **100% efficient**

We need a better diagnosis method!
Spots mimicking Planets

If an RV signal is created by a spot, it results from the contrast between the stellar disk and the cold spot.
Spots mimicking Planets

If an RV signal is created by a spot, it results from the contrast between the stellar disk and the cold spot.

If we observe in the IR, the amplitude of the effect will be significantly reduced!
Recently Setiawan et al. (2008) announced a giant planet (~10 M\textsubscript{Jup}) in a close-in orbit (0.04 A.U.). The discovery was based on FEROS RV and backed by:

- The lack of correlation between RV and BIS;
- The rotation period being estimated as smaller than the planet’s period.

But TW Hya is a slow rotator (<2 km/s) and the photometric period is hard to determine.
TW Hya: our campaign

We confirmed the optical RV orbit but we found that the amplitude of the signal depended on the correlation mask!

We used spot modeling (SOAP: Bonfils & Santos, in prep) and showed that the signal could be created by a spot.
TW Hya: our campaign

We confirmed the optical RV orbit but we found that the amplitude of the signal depended on the correlation mask!

We used spot modeling (SOAP: Bonfils & Santos, in prep) and showed that the signal could be created by a spot.

Can it be a spot?
Exploring the near-IR

Measuring RVs in the near-IR is interesting to:

• Observe optically faint M dwarfs;
• Explore a favorable planet-to-star contrast;
• Reduce spot’s effect on RV.

but there are some technical issues to overcome...

• Detector Properties (CMOS vs CCD);
• Atmospheric Transmission;
• Establishment of a reliable wav. calib.
CRIRES

The CRyogenic high-resolution InfraRed Echelle Spectrograph was developed by ESO and mounted on VLT UT1.

Explores the spectral range from 0.95 to 5.4 μm with a simultaneous wavelength coverage of λ/70 and provides a R of up to 100 000.

The detectors are four Aladdin III InSb arrays and a MACAO system is used to optimize the signal-to-noise ratio and the spatial resolution.

At an early stage, CRIRES was not provided with a precise wavelength reference system.
Calibrating Spectrographs

CRIRES is, by construction, stabilized in Pressure and Temperature: small IP profiles variations

Several authors have proved back in the 80’s that optical O₂ atmospheric lines were very stable, down to 5 m/s

Are there nIR equivalents that being sharp, deep and easy to identify, provide for a reliable wavelength calibration, without polluting too much our spectra?
Calibrating Spectrographs

CRIRES is, by construction, stabilized in Pressure and Temperature: small IP profiles variations

Several authors have proved back in the 80’s that optical O$_2$ atmospheric lines were very stable, down to 5 m/s

Are there nIR equivalents that being sharp, deep and easy to identify, provide for a reliable wavelength calibration, without polluting too much our spectra?

CO$_2$ lines provide for all these characteristics, creating a ready to use, always present gas cell!
TW Hya: CRIRES

We observed TW Hya with CRIRES in the H band, domain where we could use the atmospheric CO$_2$ lines as wavelength reference.

The science observations were followed by the measurement of a RV standard, HD108309, known to be stable down to 5 m/s, to correct for unaccounted systematics.
The first data reduction yielded a clear result:

<table>
<thead>
<tr>
<th>RV [km/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.25</td>
</tr>
<tr>
<td>12.3</td>
</tr>
<tr>
<td>12.35</td>
</tr>
<tr>
<td>12.4</td>
</tr>
<tr>
<td>12.45</td>
</tr>
<tr>
<td>12.5</td>
</tr>
<tr>
<td>12.55</td>
</tr>
<tr>
<td>12.6</td>
</tr>
<tr>
<td>12.65</td>
</tr>
<tr>
<td>12.7</td>
</tr>
<tr>
<td>12.75</td>
</tr>
<tr>
<td>12.8</td>
</tr>
</tbody>
</table>

The graph shows CRIRES RV overplotted on SHL08 orbit with a 35 m/s dispersion.

Huèlamo et al. 2008, A&AL 489, 9
TW Hya: CRIRES (new results!)

Improved data reduction allowed for systematics pinpointing (such as telluric contamination) and we reached

5 m/s dispersion!

Gl86 by CRIRES (new results!)

Table 1. Orbital elements of Gliese 86 after correction of the 0.36 m s\(^{-1}\) d\(^{-1}\) linear drift of the \(\gamma\)-point.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>15.78</td>
<td>d</td>
</tr>
<tr>
<td>(T)</td>
<td>2451146.7</td>
<td>d</td>
</tr>
<tr>
<td>(e)</td>
<td>0.046</td>
<td>-</td>
</tr>
<tr>
<td>(V_o)</td>
<td>56.57</td>
<td>km s(^{-1})</td>
</tr>
<tr>
<td>(\omega)</td>
<td>270</td>
<td>-</td>
</tr>
<tr>
<td>(K_1)</td>
<td>380</td>
<td>m s(^{-1})</td>
</tr>
<tr>
<td>(f_1(m))</td>
<td>(8.9 \cdot 10^{-6})</td>
<td>m s(^{-1})</td>
</tr>
<tr>
<td>((O - C)^1)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>(N)</td>
<td>61</td>
<td>-</td>
</tr>
</tbody>
</table>

\((^1)\) At \(T_0 = 2451500\) d

\((^1)\) Without the drift correction the O-C of the fit would be 13 m s\(^{-1}\)

![Graph of radial velocity vs. phase](image1.png)

Fig. 1. Phased orbital motion of Gliese 86 corrected from the long term drift. The solid line is the best fit orbit. See orbital elements in Table 1

CRIRES data reproduces well the published orbit!

Atmospheric Lines

The analysis of telluric lines present in HARPS data show they are extremely stable on the long term:

<table>
<thead>
<tr>
<th>Year</th>
<th># of points</th>
<th># of days</th>
<th># of points/day</th>
<th>time span [days]</th>
<th>photon noise [m/s]</th>
<th>σ [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>2025</td>
<td>9</td>
<td>225.0</td>
<td>73</td>
<td>1.30</td>
<td>10.4</td>
</tr>
<tr>
<td>2006</td>
<td>135</td>
<td>3</td>
<td>45.0</td>
<td>315</td>
<td>0.74</td>
<td>3.43</td>
</tr>
<tr>
<td>2007</td>
<td>146</td>
<td>11</td>
<td>13.27</td>
<td>136</td>
<td>0.48</td>
<td>3.05</td>
</tr>
<tr>
<td>2008</td>
<td>1805</td>
<td>43</td>
<td>43.16</td>
<td>134</td>
<td>0.79</td>
<td>7.96</td>
</tr>
<tr>
<td>2009</td>
<td>43</td>
<td>5</td>
<td>8.6</td>
<td>7</td>
<td>0.76</td>
<td>2.93</td>
</tr>
<tr>
<td>Total</td>
<td>4205</td>
<td>71</td>
<td>59.22</td>
<td>1587</td>
<td>1.02</td>
<td>10.7</td>
</tr>
</tbody>
</table>

Table 1: Statistics of RV determinations for all Tau Ceti data.

The measured RV variations are due to atmospheric phenomena and can be explained -- and corrected for -- using simple empirical models!
TW Hya & CRIRES: conclusions

- The probability that the CRIRES points are drawn from the announced planetary orbit is lower than 1×10^{-6}; spot theory prevails over the planet theory;
- By observing in the IR one can reduce the effects of spots on RV's;
- CRIRES can deliver accurate RV's, as the data on Gl 86 and the new reduction testify;
- Atmospheric Lines are stable down to 10 m/s on a 5 years timescale and better than that if you correct for atmospheric effects.