Mapa do Site
Contactos
Siga-nos no Facebook Siga-nos no Twitter Canal YouTube
Centro de Astrofísica da Universidade do Porto

Polychronis Papaderos
Investigador

Email
papaderos@astro.up.pt
Página pessoal
http://www.observational-cosmology.eu/papaderos/

Últimas publicações no CAUP/IA
M. G. del Valle-Espinosa, R. Sánchez-Janssen, R. O. Amorín, V. A. López Fernández, J. Sánchez Almeida, B. García-Lorenzo, P. Papaderos, 2023,
Spatially resolved chemodynamics of the starburst dwarf galaxy CGCG 007-025: evidence for recent accretion of metal-poor gas,
Monthly Notices of the Royal Astronomical Society, 522, 15
>> Abstract
P. Papaderos, G. Östlin, I. P. Breda, 2023,
Bulgeless disks, dark galaxies, inverted color gradients, and other expected phenomena at higher z. The chromatic surface brightness modulation (CMOD) effect,
Astronomy & Astrophysics, 673, 39
>> Abstract
N. Roche, J. M. Vílchez, J. Iglesias-Páramo, P. Papaderos, S. F. Sánchez, C. Kehrig, S. Duarte Puertas, 2023,
Integral Field Spectroscopy of the cometary starburst galaxy NGC 4861,
Monthly Notices of the Royal Astronomical Society, 523, 15
>> Abstract
V. Fernández, R. O. Amorín, R. Sanchez-Janssen, M. G. del Valle-Espinosa, P. Papaderos, 2023,
The resolved chemical composition of the starburst dwarf galaxy CGCG007-025: direct method versus photoionization model fitting,
Monthly Notices of the Royal Astronomical Society, 520, 14
>> Abstract
A. Humphrey, P. A. C. Cunha, A. Paulino-Afonso, S. Amarantidis, R. Carvajal, J. M. Gomes, I. Matute, P. Papaderos, 2023,
Improving machine learning-derived photometric redshifts and physical property estimates using unlabelled observations,
Monthly Notices of the Royal Astronomical Society, 520, 305 - 313
>> Abstract
Euclid Collaboration, A. Humphrey, L. Bisigello, P. A. C. Cunha, M. Bolzonella, S. Fotopoulou, K. Caputi, C. Tortora, G. Zamorani, P. Papaderos et al. (including: J. Brinchmann, A. C. da Silva, I. Tereno, C. S. Carvalho), 2023,
Euclid preparation. XXII. Selection of quiescent galaxies from mock photometry using machine learning,
Astronomy & Astrophysics, 671, 36
>> Abstract