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We can explain all of the interactions we currently know by four fields:
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Let us focus more on two of them: Gravity and QCD.

I Gravity is successfully described by the curvature of space-time
caused by all massive object, as described by Einstein’s general theory
of relativity.

I There is a fantastic agreement between theory and measurement.

I However, problems come when trying to quantize it.

I The graviton couples to itself and at high energies (i.e. short
distances) this contribution diverges.

I Hence there is a need to replace the theory at energy scales of order
MP = 1019mp.

I Similarly, Fermi’s theory of weak interactions was non-renormalizable,
and was replaced by electroweak theory at high energy scales.
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The strong interaction is also notoriously difficult to study. Conventionally
it is described by Quantum Chromodynamics.

I It describes quarks and gluons, and introduces a new quantum
number called ’color’. The quarks also come in different ’flavors’.

I The coupling constant runs in the opposite way to the other
interactions, and at very short distances the coupling is turned off.

α(µ1) =
4π

b0 ln(µ21/Λ
2
QCD)

b0 =
11

3
N − 2

3
nf (= 7)

I Like gravity, gluons also couple to each other, making the theory very
difficult to study, but the theory is renormalizable.

I We will be especially interested at studying this theory when the
coupling is strong.
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This gives us a lot of particles and forces, and why this exact number?
But there is another possibility:

String theory!

(Veneziano, Nambu, Goto, Green, Schwarz, Witten, Scherk,
Maldacena,...,1970s - present)

I The final unification, the theory of everything: All particles and
forces, are just strings.

I It has several advantages, notably that due to the fact that strings
have length, of order MP , it replaces gravity at those scales, giving a
finite theory.

I It can also accommodate all the other particles and forces of the
standard model.
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String theory makes some surprising predictions:

I for example we live in 10 dimensions. But where are the other
dimensions?
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I Another interesting application of string theory, one that several of us
at CFP are exploring, is just to the strong interaction.

I This is a conjecture (with a lot of evidence!) that has emerged in the
last 15 years, under the name AdS/CFT correspondence, or more
generally gauge/gravity duality.

I It relates a class of theories, very similar to QCD, and with no gravity,
to a string theory (including gravity) on a 5D Anti-deSitter
space-time.

I Gravity emerges in a sense as the square of the strong interaction,
and the extra coordinate emerges the distance between two gluons.
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This is an area of active research.

Example: can we use string theory to
study the structure of the proton? - answer: YES!
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Figure: Costa, MD, 2012, χ2 = 1.00

Great agreement between theory and experiment!
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There are many other applications of this method, for example to the
study of cosmic rays. In our group, several people have done work on
gauge/gravity duality and related subjects:

I Bertolami - general applications of the holographic principle

I Bombardelli - applications of exactly solvable models to calculation of
string energy spectrum

I Costa - QCD, conformal field theories, Pomeron (graviton) physics,
black holes, diffractive scattering

I Djuric - applications to QCD, diffractive scattering, Pomeron
(graviton) physics

I Penedones - conformal field theories, Pomeron (graviton) physics

I Vairinhos - Monte Carlo simulations

I Zoakos - applications including the addition of quarks, and to
condensed matter systems
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Thank you!


