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Motivation

L

# Pure intellectual interest in establishing
the value of a fundamental “constant”
in the early universe

# Input and information to guide our way
through the vast landscape (10-97?) of
elementary particle and dark energy
theories




/ Bottom Line

®Apu/n < 10 at a look
back time of ~11Gyr
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Concept

® A C
In t
mo

nange in p produces a calculable change
ne rotational and vibrational energies of a

ecule relative to the electronic energy

(Thompson 1975).
® These changes in the energy levels alter the

spectra of the molecules in a way that can

not

be duplicated by a redshift.

® The value of u at high redshift can be
determined from the absorption spectra of H,
in high redshift DLA systems




H, Energy Levels
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Sensitivity Constants
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®

Although implicit in previous work, Varshalovich and Levshakov (1993)
epr|C|t developed the sen5|t|V|ty constant which for a line i is defined

_dind,  pdA  pdv
dnuy A duy v, du

The rest frame wavelengths are related to the observed wavelengths

by
A, Au
A =(+z)(1+K, )

#® Each line has a unique sensitivity constant K: which can be slightly

negative, zero or positive.

#® The higher the vibrational quantum number the larger the sensitivity

constant.

# The overlap of the Lyman and Werner bands places lines with very

different sensitivity constants in close proximity to each other.




Sensitivity Constants cont.

#In principle one can match the
wavelengths of the H, absorption lines
against the pattern of shifts predicted
by the sensitivity constants.

#In practice the available signal to noise
and resolution allows only a fit to the
trend of the predicted shifts.




Redshift vs. Sensitivity
Coefficients
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FIG. 2: Linear fit to reduced redshift of quasar absorption lines ¢ as defined by Eq. 9. Filled circles:
Q 0347-383, z = 3.0248970; open circles: Q 0405-443, z = 2.5947325. The error-weighted linear fit

is shown by a dashed line, the unweighted fit by a dotted line.

From Reinhold et al. 2006




Observational History
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# Historically there have been 3 types of
observations

= Optical observations of redshifted absorption lines
of the electronic transitions of H, in DLAs.

s Radio observations of rotational and inversion
transitions of molecules in molecular clouds.

= Laboratory measurement of the current rate of
change of .




H, Observations

/R

# When first proposed in 1975 the method
required 3 advances to be practical

= Larger telescopes

= More sensitive and higher resolution astronomical
spectrometers

s More accurate measurements of the rest
wavelengths of the transitions

# All of these have now occurred




H, Difficulties
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® Very few DLAs contain measurable amounts
of H,.
= Only about a dozen known

# The Lyman and Werner lines lie in the Ly
alpha Forest of atomic absorption lines

# The primary shift is in the vibrational and
rotational levels. These shifts are diluted by
the electronic energy.

= Typical K; are about 10-.




Sample Spectrum and Difficulties
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H, Advantages

# Potential for many lines from the same
ground state

#® Well measured rest wavelengths

= (Ubachs et al. 2007)

# Lines with significantly different
sensitivity factors in close spectral
proximity
= Mix of Lyman and Werner lines
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All 4 lines have the same ground state.




Very Few Systems Actually

/R

®

&

Studied

PKS 0528-250= Q0528-250 (z = 2.811)

n F?It(z2 88 g)l (1988), Cowie & Songaila(1995), Potekhin et al. (1998), King et
al.

Q12324082 (z=2.338)
= Ivanchik et al. (2002)
Q0347-383 (z=3.025) and Q0405-443 (z=2.595)

= D’Odorico(2001), Ivanchik et al.(2002,2003,2005), Levshakov et al.(2002),
Ubachs & Reinhold(2004), Reinhold et al.(2006), Ubachs et al.(2007), King
et al. (2008), Wendt & Reimers(2008), Thompson et al.(2009)

Q1331+170 (z=1.776)
= Cui et al. (2006)

J2123-0050 (z=2.059)
= Malec et al. 2010

A total of 6 systems in all
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Sources of Systematic Errors

® Systematic errors in the wavelength
calibration

= The sensitivity factors K. are roughly proportional
to the vibrational quantum number of the upper

state (ground state is always v = 0)

= The higher the upper vibrational quantum number
the shorter the wavelength

= Systematic wavelength errors therefore translate
into positive or negative changes in u

= Partially mitigated by the mixture of Lyman and
Werner bands.




Application to the Positive
Detection
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#® Systematic wavelength errors in the old UVES reduction pipeline may

be the source of the previous positive result for a change in p.

#® New results from the same data (Thompson et al. 2009)
= See also King et al. (2008)

1o T

Au/p = (1.6 +\- 1) x 10°

Reduced Redshift ¢ x 10°

I I 1 1 1 | 1 1 I 1 I 1
-0.02 0.00 0.02 0.04 0.06
Sensitivity Coefficient K;




Bootstrap Statistics
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Lyman Werner Pairs

# The superposition of Lyman and Werner
lines produces closely spaced pairs with
very different sensitivity factors.

#® We looked at the Au/u values for these
pairs in Q0347-383 and Q0405-443.

#®The Ap/u values are uniformly
distributed around O.
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Instrument Systematics
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#In most spectrometers the light path of
the calibration lamp is not the same as
the object light path

» Different angles between the object and
calibration lamp principal rays can
introduce systematic wavelength
differences.
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Other systematics

®Errors in rest wavelength

= Errors in rest wavelength A\ produce
errors in Au/p of (1/K)AA/A.

s Typical K. are 0.02, typical AA/A are 1078,

= Errors are then ~5x107 which may limit
future high resolution observations

#® Errors in the sensitivity constants.

» Errors in the sensitivity factor K. result in
errors in Ap/p proportional to AK/K..
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Systematics Continued

# Mixing of different rotational quantum
number lower states

= Cold and hot gas can have different

kinematics.

= The effect would be slight since the lower
rotational J levels do not have a large
influence on the sensitivity factors.




Summary of the State of H,
Studies

@ Except for Q0347-383 and Q0405-443
there have been no claims of a detected
shift in p.

# Reanalysis of the Q0347-383 and

Q0405-443 data by two groups find no
shift.

®From H, data Ap/u < 10->for a lookback
time of 10.5 gigayears (z~3.1).
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Table of Recent Measurements

Group Objects Ap/p
Thompson et | Q0347-383, (7 +/- 8)x10°
al (2009) Q0405-443
King et al Q0347-383, (2.6+/- 3)x10°
(2009) Q0405-443,

Q0528-250*
Malec et al J2124-0050 (5.5+/- 6)x10°
(2010)

* Dominates Result




History of Radio Molecular
Studies
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# Radio studies of u are much more
recent than the first optical studies of
I_|2

# Studies have concentrated on the
inversion transition of ammonia




Advantages of Radio
Measurements
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# Radio telescopes are capable of high
frequency resolution

s Av/v < 107/
# Radio molecular transitions have high
sensitivity factors
s Kyy; = 4.46 for inversion transitions
m K ~ 1. for rotational transitions




Disadvantages of Radio
Observations
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® In general there are not multiple lines from
the same ground state
a Often a different molecule is used as the reference

= This is a particular problem in systems that have
multiple close spaced velocity components. If the
abundance ratios between the two components is
different between the two molecules, errors occur.

# To date observations have been limited to
redshifts less than 1




Observations of NH; to
Determine Au/u
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#® Absorption system in the spectrum of
B0218+357 at z = 0.68466

= Flambaum and Kozlov (2007), Murphy et al.
(2008)

& Find [Aw/u| < 1.8 x 106 at z=0.68466

= From Murphy et al. 2008 who used HCN and HCO*
as the wavelength standard

= The universe is ~1/2 its present age at this point
and in the transition between matter dominated
and dark energy dominated epochs.




OH Observations
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# Four observed transitions that have
different dependencies on p, o and g,
(the proton g factor).
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Spatial variations of n within the
Milky Way

# Levshakov, Molaro and Kozlov (2008)
find Ap/p values of (4-14)x108 for
various locations in the Milky Way

® They compare NH; emission lines with
those of HC;N and N,H*
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State of Radio Observations

# Most accurate limits on Ap/u but at
redshifts below 1

@ H, not available at radio wavelengths

#®The lower abundance of other
molecules is a limiting factor

# Hard to find transitions from a common
ground state to eliminate kinematic
effects
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Conclusions

® Optical H, measurements limit Au/u to less
than 10~ at redshifts up to 3

# Radio measurements are pushing Ap/u to less
than 10° at redshifts below 1

#® Future large telescopes and spectrometers
should be able to measure Ap/u to less than
10 in the near future

# These limits will impact both dark energy and
dark matter theories.




