String Theory, Dark Energy and Varying Couplings

Marco Zagermann (Leibniz Universität Hannover)

Leibniz Universität Hannover

Based on:

Blåbäck, Danielsson, Junghans, Van Riet, Wrase, MZ (to appear) 1003.0029 (Wrase, MZ)

0912.3287 (Caviezel, Wrase, M.Z.)

0812.3551 (Caviezel, Koerber, Körs, Lüst, Wrase, M.Z.)

String theory:

Unified theory of all interactions & particles

Quantum theory of gravity

String theory:

Unified theory of all interactions & particles

Quantum theory of gravity

But: Mathematical consistency requires

10 (or 11) spacetime dimensions

"Compactification"

Assumption:
$$\mathcal{M}^{(10)} = \mathcal{M}^{(4)} \times \mathcal{M}^{(6)}$$

small & compact

"Compactification"

Assumption:
$$\mathcal{M}^{(10)} = \mathcal{M}^{(4)} \times \mathcal{M}^{(6)}$$

small & compact

⇒ Low energy effective field theory:

- Effectively 4D
- Details depend on 6D geometry
 - → Spectrum
 - → Couplings ←

Light 4D scalar fields that descend from internal 6D components of 10D fields

Light 4D scalar fields that descend from internal 6D components of 10D fields

Light 4D scalar fields that descend from internal 6D components of 10D fields

E.g. IOD metric tensor: $g_{MN} = (g_{\mu\nu}, g_{mn})$ 4D metric tensor

Heavy
integrated out

Hoduli out

Light 4D scalar fields that descend from internal 6D components of 10D fields

⇒ Time-dependent couplings from time-dependent moduli?

Phenomenological constraints on light moduli:

- Fifth force experiments
- BBNOverclosure bounds

Standard approach: Make moduli sufficiently heavy

Phenomenological constraints on light moduli:

- Fifth force experiments
- Overclosure bounds

Standard approach: Make moduli sufficiently heavy

Accelerated cosmic expansion

A general problem:

Typical scalar potentials receive many contributions and corrections

A general problem:

Typical scalar potentials receive many contributions and corrections

Often:

Subtle interplay of

classical and quantum effects

E.g. Kachru. Kallosh, Linde, Trivedi ("KKLT", 2003)

A general problem:

Typical scalar potentials receive many contributions and corrections

Often:

Easy Hard to compute precisely

Main tool: | Fluxes of antisymmetric tensor fields

Main tool: | Fluxes of antisymmetric tensor fields

10D string spectrum $\ni (C_{M_1...M_{(p-1)}})$ Antisymmetric tensor fields

 \Rightarrow Field strengths $F_{M_1...M_p} = \partial_{[M_1}C_{M_2,...,M_p]}$

Main tool:

Fluxes of antisymmetric tensor fields

IOD string spectrum \ni $C_{M_1...M_{(p-1)}} \leftarrow Antisymmetric tensor fields$

 \Rightarrow Field strengths $F_{M_1...M_p} = \partial_{[M_1}C_{M_2,...,M_p]}$

F_p-flux through
$$\Sigma_p \subset \mathcal{M}^{(6)}$$
 \Rightarrow Potential for Σ_p -deformation modulus

Simple "no-go" theorems against de Sitter vacua

E.g.: Gibbons (1984); de Wit, Smit, Hari Dass (1987) Maldacena, Nuñez (2000) Steinhardt, Wesley (2008) Simple "no-go" theorems against de Sitter vacua

```
E.g.: Gibbons (1984);
de Wit, Smit, Hari Dass (1987)
Maldacena, Nuñez (2000)
Steinhardt, Wesley (2008)
```

Assumptions include:

```
A positivity requirement for T_{MN} (E.g. T_{MN}\,n^N\,n^M\geq 0, \qquad n\cdot n=0 )
```

No de Sitter solutions possible

Simple "no-go" theorems against de Sitter vacua

```
E.g.: Gibbons (1984);
de Wit, Smit, Hari Dass (1987)
Maldacena, Nuñez (2000)
Steinhardt, Wesley (2008)
```

Assumptions include:

A positivity requirement for T_{MN} (E.g. $T_{MN} \, n^N \, n^M \geq 0, \qquad n \cdot n = 0$)

⇒ No de Sitter solutions possible

Satisfied for fluxes

⇒ No de Sitter!

Manifestation in 4D field theory:

Manifestation in 4D field theory:

At best: Short transient periods of accelerated expansion

Cf. Townsend, Wohlfarth; Steinhardt, Wesley

But:

String theory naturally contains objects that violate the positive energy assumption of the above no-go theorem!

But:

String theory naturally contains objects that violate the positive energy assumption of the above no-go theorem!

⇒ Orientifold planes ("O-planes")

(=Extended objects with negative tension)

However: Refined no-go theorem for

- Fluxes
 O-planes
 Ricci-flat M⁽⁶⁾

Hertzberg, Kachru, Taylor, Tegmark (2007)

However: Refined no-go theorem for

- Fluxes
 O-planes
 Ricci-flat M⁽⁶⁾

Hertzberg, Kachru, Taylor, Tegmark (2007)

However: Refined no-go theorem for

- Fluxes
- O-planes
 Ricci-flat $\mathcal{M}^{(6)}$

Hertzberg, Kachru, Taylor, Tegmark (2007)

Idea: Abandon Ricci-flatness of $\mathcal{M}^{(6)}$

Idea: Abandon Ricci-flatness of $\mathcal{M}^{(6)}$

Promising case: $R^{(6)} < 0$ (Negative scalar curvature)

Cf. Mimoso's Talk

$$V_{
m curv} \propto -{\sf R} \propto
ho^{-1} au^{-2}$$

⇒ Effective uplift term for R<0

Idea: Abandon Ricci-flatness of $\mathcal{M}^{(6)}$

Promising case: $R^{(6)} < 0$ (Negative scalar curvature)

Cf. Mimoso's Talk

$$V_{
m curv} \propto -{\sf R} \propto
ho^{-1} au^{-2}$$

⇒ Effective uplift term for R<0

Effective 4D action hard to compute for $R^{(6)} \neq 0$

Effective 4D action hard to compute for $R^{(6)} \neq 0$

Case by case study for seven 6D coset spaces that preserve some supersymmetry

Caviezel, Koerber, Körs, Lüst, Wrase, M.Z. (2008,2009)

Effective 4D action hard to compute for $R^{(6)} \neq 0$

Case by case study for seven 6D coset spaces that preserve some supersymmetry

Again steep directions ($\varepsilon = O(1)$) except for one model:

$$\mathcal{M}^{(6)} = SU(2) \times SU(2)$$

Effective 4D action hard to compute for $R^{(6)} \neq 0$

 \Rightarrow

Case by case study for seven 6D coset spaces that preserve some supersymmetry

Again steep directions ($\varepsilon = O(1)$) except for one model:

$$\mathcal{M}^{(6)} = SU(2) \times SU(2)$$

Found a de Sitter extremum, but with strongly tachyonic direction:

$$\eta \equiv \mathsf{V}''/\mathsf{V} = \mathcal{O}(-1)$$

However:

Recent studies cast doubts on the validity of the effective 4D theory used here

```
Douglas, Kallosh (2010)
Blåbäck, Danielsson, Junghans, Van Riet, Wrase, MZ (to appear)
```

Possibly, this dS extremum does not really exist...

Summary and conclusion:

• Full moduli stabilization in de Sitter minima is quite difficult in <u>purely classical</u> string compactifications

(Even if one uses O-planes and negative curvature)

- Accelerated expansion in these setups typically only short & transient
- Suggestion (Steinhardt, Wesley (2010): Rule out many of these models based on w and G/G measurements?

(E.g. DETF Stage II + 2x improvement in \dot{G}/G)

- But what about the other constraints (5th force, BBN, overclosure,...)?
- More realistic scenarios by combination of classical and quantum effects? (→ KKLT,...)