Robust Limit on a varying proton-to-electron mass ratio from a single H₂ system

Martin Wendt

14' × 14' (STScI)

JENAM 2010, September 7th

Robust Limit on a varying proton-to-electron mass ratio from a single H₂ system

Martin Wendt

QSO 0347-383

JENAM 2010, September 7th

Overview

- Theoretical background
- Quasar absorption lines
- Status quo
- Data
- Analysis
- Summary & Outlook

The proton-to-electron mass-ratio μ reflects the ratio of the strong couplings (proton mass via Λ_{QCD}) to the electroweak forces (electron mass is related to the Higgs field).

$\mu = 1836.15267261(85)$ (NIST)

The proton-to-electron mass-ratio μ reflects the ratio of the strong couplings (proton mass via Λ_{QCD}) to the electroweak forces (electron mass is related to the Higgs field).

- To determine spatial variation:
 measure μ at great distances and the local values of μ.
- For temporal variation:
 measurements at great distances and today's μ.

 $\mu = 1836.15267261(85)$ (NIST)

 Electron-vibro-rotational transitions depend on reduced mass of the H₂ molecule.

- Electron-vibro-rotational transitions depend on reduced mass of the H₂ molecule.
- Different dependence for different transitions.

- Electron-vibro-rotational transitions depend on reduced mass of the H₂ molecule.
- Different dependence for different transitions.

Distinguish cosmological redshift of a line from the shift caused by possible variation of **µ**.

 $\lambda_{i_{obs}} = \lambda_{i_{rest}} \times (1 + Z_{abs}) (1 + K_i \times \Delta \mu / \mu)$

z ~ 3 corresponds to about
 12 Gyr look-back time.

- z ~ 3 corresponds to about
 12 Gyr look-back time.
- H₂ transitions originate at $\sim 950 1050 \text{ Å}$.

- z ~ 3 corresponds to about
 12 Gyr look-back time.
- H₂ transitions originate at $\sim 950 1050 \text{ Å}$.
- For z > 2.5 the transitions are shifted into the optical range and the Ly- α forest.

Status quo

Numerous $\Delta \mu / \mu$ measurements via H₂ mainly based on UVES observations in 2002.

For QSO 0347-383 and Q0405-443 at $z \sim 3$, results range from:

 $\Delta \mu / \mu = (20 \pm 6) \times 10^{-6}$ (Reinhold 2006) to $\Delta \mu / \mu = (-28 \pm 16) \times 10^{-6}$ (Thompson 2009).

Status quo

Numerous $\Delta \mu / \mu$ measurements via H₂ mainly based on UVES observations in 2002.

For QSO 0347-383 and Q0405-443 at $z \sim 3$, results range from:

 $\Delta \mu / \mu = (20 \pm 6) \times 10^{-6}$ (Reinhold 2006) to $\Delta \mu / \mu = (-28 \pm 16) \times 10^{-6}$ (Thompson 2009).

 $\Delta \mu / \mu = (15 \pm 15) \times 10^{-6}$ (Wendt & Molaro 2010).

Status quo

Numerous $\Delta \mu / \mu$ measurements via H₂ mainly based on UVES observations in 2002.

For QSO 0347-383 and Q0405-443 at $z \sim 3$, results range from:

 $\Delta \mu / \mu = (20 \pm 6) \times 10^{-6}$ (Reinhold 2006) to $\Delta \mu / \mu = (-28 \pm 16) \times 10^{-6}$ (Thompson 2009).

 $\Delta \mu / \mu = (15 \pm 15) \times 10^{-6}$ (Wendt & Molaro 2010).

New data in 2009 for QSO 0347-383: $\Delta \mu / \mu = (2.9 \pm 8) \times 10^{-6}$.

Utilizing overlooked data of QSO 0347-383.

Correction for constant velocity shifts inbetween them.

Pixel size ~ 35 mÅ.

6+9 observed spectra of QSO 347-383.

Polynomial interpolation of flux. Cross correlation without rebinning of data.

Polynomial interpolation of flux. Cross correlation without rebinning of data. Shifts up to several mÅ. Average deviation ~2.3 mÅ.

Test of the error level of the UVES reduction pipeline in saturated areas.

Combined fit of 38 lines fit simultaneously.

 $\Delta \mu / \mu = [15 \pm (9_{\text{stat}} + 6_{\text{sys}})] \times 10^{-6}.$

New state-of-the-art data

Verfication of aimed at precision with early test observations in September 2009.

No 2×2 binning of CCD pixels \rightarrow enhanced resolution.

Thorium Argon lamp spectra taken right after and before each scientific exposure.

No reset of grating between successive exposures.

11 observed spectra of QSO 347-383.

New state-of-the-art data

2002 and 2009 data of QSO 0347-383.

Preliminary result based on recent data: $\Delta \mu / \mu = [2.9 \pm (6_{stat} + 2_{sys})] \times 10^{-6}$.

Bootstrap sampling and gaussian fit of 2009 data and 2002 data.

Positioning errors of statistical nature.

Facing calibration issues

Quantitative analysis of UVES Echelle spectrograph calibration. Solar spectra taken via observations of the asteroid Iris-7 at 10^{m} . With a diameter of > 200 km its spherical and evenly illuminated. Pointlike source of < 0.2".

Model by Kaasalainen et al. 2002

Facing calibration issues

Prediction by Whitmore *et al.* (2010) and comparison with data from the HARPS spectrograph.

Summary

- No variation in μ detected to the level of 1 ppm over a time span of ~ 12 Gyr.
- Spectral resolution and signal-to-noise ratio are the dominant limiting factors.
- Wavelength calibration is critical and of increasing importance for future observations.
- Robust upper limit of µ variation rules out further theoretical models and sets even tighter constraints on the fine structure constant.

$$\frac{\delta(m/\Lambda_{QCD})}{(m/\Lambda_{QCD})}\sim 35\frac{\delta\alpha}{\alpha}$$

(Flammbaum 2006)

Outlook

- ESO Large Program granted and running...
- New data to apply refined analysis.
- Work out new methods for analysis and simulation to meet future requirements (E-ELT).
- Modeling of macroscopic velocity fields in the absorber.

Thank you.

Martin Wendt, JENAM 2010, September 7th

