From Varying Constants to Fundamental Physics Lisboa, 6 September 2010

The Variation of G in a Negatively Curved Space-time

José P. Mimoso (Dep. Physics \& CAAUL-U. Lisbon),
Francisco Lobo (CAUL, U. Lisbon)
September 6, 2010

Motivation

Gravitational effects of negative curvature?
Increasing interest in the features of large voids.
Possible relation with acceleration of late time unverse?
Unexpected pecularities of negative curvature?

Outline

Description of a certain static solution with surfaces of negative curvature
Derivation of the corresponding generalised ST exact solution
Discussion of difficulties regarding the PPN formalism
Cautionary note
Work still in progress...

The GR solution

We looked for a vacuum solution of the form

$$
d s^{2}=-e^{U(r)} d t^{2}+e^{W(r)} d r^{2}+r^{2}\left(d u^{2}+\sinh ^{2} u d v^{2}\right)
$$

And this leads to

$$
d s^{2}=-\left(\frac{2 C}{r}-1\right) d t^{2}+\frac{d r^{2}}{\left(\frac{2 C}{r}-1\right)}+r^{2}\left(d u^{2}+\sinh ^{2} u d v^{2}\right)
$$

With regard to Petrov classification, this solution is a degenerate static solution of the class A2 of Ehlers and Kund \dagger [J. Ehlers \& W. Kundt, in Gravitation: an introduction to current research (1962) ed. L. Witten, pp 49-101]

$$
d s^{2}=-\left(\frac{2 C}{r}-1\right) d t^{2}+\frac{d r^{2}}{\left(\frac{2 C}{r}-1\right)}+r^{2}\left(d u^{2}+\sinh ^{2} u d v^{2}\right)
$$

Striking features are immediately apparent

$$
\left(1-\frac{2 m}{r}\right)_{\text {Schwarz }} \Rightarrow\left(\frac{2 C}{r}-1\right)_{\text {Neg }- \text { Schwarz }}
$$

Event horizon at

$$
r=2 C
$$

Coordinates valid in the region $r<2 C$
Radial light rays

$$
\begin{aligned}
\frac{d t}{d r}=\frac{1}{\frac{2 C}{r}-1} & >0 \leftarrow r<2 C \\
& <0 \leftarrow r>2 C_{4}
\end{aligned}
$$

TABLE 2-3.1. Degenerate Static Vacuum Fields

1	2	3	4	5	6	7	8	9	10
Jass	1 First Fundamental Form G	Coordinate Ranges	$\boldsymbol{\alpha}$	${ }^{*}$ s	ν_{T}	Ks	K_{T}	r	s
A1	$r^{2}\left(d \vartheta^{2}+\sin ^{2} \vartheta d \varphi^{2}\right)+\frac{d r^{2}}{1-b / r}-\left(1-\frac{b}{r}\right) d t^{2}$	$\begin{aligned} & 0 \leqslant \vartheta \leqslant \pi, \varphi \bmod 2 \pi \\ & 0<b<r<\infty \\ & \text { or } b<0<r<\infty \end{aligned}$	$-\frac{b}{r^{3}}$	0	$\left(\frac{a}{b}\right)^{2 / 3}$	$\frac{1}{r^{2}}$	- ${ }^{-}$	4	$1 S$
A2	$z^{2}\left(d r^{2}+\sinh ^{2} r d \varphi^{2}\right)+\frac{d z^{2}}{b / z-1}-\left(\frac{b}{z}-1\right) d t^{2}$	$\begin{aligned} & 0 \leq r<\infty \\ & \varphi \bmod 2 \pi \\ & 0<z<b \end{aligned}$	$\frac{b}{z^{3}}$		$-\left(\frac{a}{b}\right)^{2 / 3}$	$\frac{-1}{z^{2}}$			
43	$z^{2}\left(d r^{2}+r^{2} d \varphi^{2}\right)+z d z^{2}-\frac{d t^{2}}{z}$	$\begin{aligned} & 0 \leqslant r<\infty \\ & p \bmod 2 \pi \\ & 0<z<\infty \end{aligned}$	$\frac{1}{z^{3}}$		0	0			
B1	$\frac{d t^{2}}{1-b / r}+\left(1-\frac{b}{r}\right) d \varphi^{2}+r^{2}\left(d \vartheta^{2}-\sin ^{2} \vartheta d t^{2}\right)$	$\begin{aligned} & 0<b<r<\infty \\ & \text { or } b<0<r<\infty \\ & 0<\vartheta<\pi \end{aligned}$	$-\frac{b}{r^{3}}$	$-\left(\frac{a}{b}\right)^{3 / 3}$	0	$-\alpha$	$\frac{1}{r^{2}}$		$1 T$
82	$\frac{d z^{2}}{b / z-1}+\left(\frac{b}{z}-1\right) d \varphi^{2}+z^{2}\left(d r^{2}-\sinh ^{2} r d t^{2}\right)$	$\begin{aligned} & 0<z<b \\ & 0<r<\infty \end{aligned}$	$\frac{b}{z^{3}}$	$-\left(\frac{a}{b}\right)^{2 / 3}$			$\frac{-1}{z^{2}}$		
83	$z d z^{2}+\frac{d \varphi^{2}}{z}+z^{2}\left(d r^{2}-r^{2} d t^{2}\right)$	$\begin{aligned} & 0<z<\infty \\ & 0<r<\infty \end{aligned}$	$\frac{1}{z^{3}}$	0			0		
$こ$	$\begin{aligned} & \frac{1}{(x+y)^{2}}\left(\frac{d x^{2}}{f(x)}+f(x) d \varphi^{2}+\frac{d y^{2}}{\|f(-y)\|}\|f(-y)\| d t^{2}\right) \\ & f(u) \equiv \pm\left(u^{3}+a u+b\right) \end{aligned}$	$\begin{aligned} & 0<x+y \\ & f(-y)<0 \\ & 0<f(x) \end{aligned}$	$\pm(x+y){ }^{3}$	$f(x)-\alpha$	${ }_{-\alpha}^{-f(-y)}$	${ }^{\nu}$ T	ν_{s}	2	0

[From: J. Ehlers \& W. Kundt, in Gravitation: an introduction to current research (1962) ed. L. Witten, pp 72]

The spatial metric is conformally flat, but at $r \rightarrow \infty$ it is not Minkowski
So it does not have the usual $r \rightarrow \infty$ weak field limit...
For $r>2 C, g_{00}$ and $g_{r r}$ swap signs!
For $r>C$ the metric becomes cosmological: Bianchi III

Geodesics

$h=4$
$C=1$

$h=1$

$$
2 V(r)=\left(\frac{2 C}{r}-1\right)\left(1+\frac{h^{2}}{r^{2} \sinh ^{2} u_{0}}\right)
$$

Stationary points at

$$
r_{*}=\frac{h \pm \sqrt{h^{4}-12 C^{2} h^{2}}}{2 C}
$$

Beyond $r=2 C$

$$
d s^{2}=-\left(\frac{2 C}{r}-1\right) d t^{2}+\frac{d r^{2}}{\left(\frac{2 C}{r}-1\right)}+r^{2}\left(\frac{d \chi}{1+\chi^{2}}+\chi^{2} d v^{2}\right)
$$

$$
{\frac{d \chi}{1+\chi^{2}}}^{2}+\chi^{2} d \nu^{2}=\left(1-\left(\sqrt{1+\chi^{2}}\right)^{2}\right) d \chi^{2}+\chi^{2} d v^{2}
$$

$x=a(r) \sinh u \cos v$

$y=a(r) \sinh u \sin v$
$z=a(r) \cosh u$
$w=b(r)$

$$
w^{2}+x^{2}+y^{2}-z^{2}=b^{2}(r)-a^{2}(r)
$$

$$
b^{\prime}(r)-a^{\prime}(r)=\left(\frac{2 C}{r}-1\right)^{-1}
$$

Space-time tunneling?

In [F. Lobo \& J. P. Mimoso, Phys. Rev. D82:044034 (2010)]
We have shown that particular constraints are placed on the shape function, that differ significantly from the Morris-Thorne wormhole.

In particular, it is shown that the energy density is always negative and the radial pressure is positive, at the throat, contrary to the Morris-Thorne counterpart.

The static vacuum metrics can be written as

$$
d s^{2}=-e^{2 U\left(x^{\mu}\right)} d t^{2}+e^{-2 U\left(x^{\mu}\right)} \bar{g}_{\mu \nu} d x^{\mu} d x^{\nu}
$$

So that the EFE are

$$
R_{\mu \nu}=\bar{R}_{\mu \nu}+2 U_{, \mu} U_{, \nu}=0
$$

[From: J. Ehlers \& W. Kundt, in Gravitation: an introduction to current research (1962) ed. L. Witten, pp 72]

Solution of scalar-tensor Brans-Dicke Theory

Scalar-tensor theories can be derived from the action

$$
\sqrt{-g} L=\sqrt{-g}\left[R-g^{a b} \nabla_{a} \phi \nabla_{b} \phi+16 \pi G L_{m}\left(\psi, m^{\beta}(\phi) g_{a b}\right)\right]
$$

Through a conformal transform $\quad g_{\mu v} \rightarrow \tilde{g}_{\mu v}=\Omega^{2}(\phi) g_{\mu v}$

$$
\sqrt{-g} L=\sqrt{-g}\left[\Phi R-\frac{\omega}{\Phi} g^{a b} \nabla_{a} \Phi \nabla_{b} \Phi+16 \pi G L_{m}(\psi)\right]
$$

Buchdahl theorem (1959)

A theorem by Buchdahl [Phys. Rev. 113, 1325 (1959)] establishes the reciprocity between any static solution of Einstein's vacuum field equations and a one-parameter family of solutions of Einstein's equations with a (massless) scalar field. The so-called Einstein frame description of the scalar-tensor gravity theories ${ }^{-}$fits precisely into the conditions of the Buchdahl theorem.

$$
\begin{aligned}
& \left(g_{00,} \bar{g}_{\mu \nu}\right) \rightarrow\left(g_{00}^{B}, \bar{g}_{\mu \nu}^{1-B}\right) \\
& \quad V=\lambda \ln \left(g_{00}\right), \quad B= \pm\left(1-2 \lambda^{2}\right)^{1 / 2}
\end{aligned}
$$

Solution of scalar-tensor Brans-Dicke Theory

$$
\begin{gathered}
d s^{2}=-\left(\frac{2 C}{r}-1\right)^{B-C} d t^{2}+\frac{d r^{2}}{\left(\frac{2 C}{r}-1\right)^{B+C}}+r^{2}\left(\frac{2 C}{r}-1\right)^{1-B-C}\left(d u^{2}+\sinh ^{2} u d v^{2}\right) \\
\Phi=\Phi_{0}\left(\frac{2 C}{r}-1\right)^{C} \\
\text { where } \quad(2 \omega+3) C^{2}+B^{2}=1
\end{gathered}
$$

Now the $r=2 C$ locus is a true point like singularity [Agnèse \& La Camera PRD (1985)].
[Mimoso and Lobo: 2010 J. Phys.: Conf. Ser. 229 012078]

Geodesics

$$
\varepsilon=\left(\frac{2 C}{r}-1\right)^{B-C} \dot{i}
$$

Conserved

$$
h / \sinh u_{*}=\left(\frac{2 C}{r}-1\right)^{1-B-C} r^{2} \dot{v}
$$

First integral

$$
\left(\frac{2 C}{r}-1\right)^{-2 C}\left(\dot{r}^{2}+\left(\frac{2 C}{r}-1\right)^{B+C}\left(1+\frac{h_{*}^{2}}{r^{2}\left(\frac{2 C}{r}-1\right)^{1-B-C}}\right)\right)=\varepsilon^{2}
$$

Some plots of the effective potential:

$$
\begin{gathered}
\dot{r}^{2}=-2 V(r) \\
2 V(r)=\left(\frac{2 C}{r}-1\right)^{B+C}\left(1+\frac{h_{*}^{2}}{r^{2}\left(\frac{2 C}{r}-1\right)^{1-B-C}}\right)-\varepsilon^{2}\left(\frac{2 C}{r}-1\right)^{2 C}
\end{gathered}
$$

$$
\begin{aligned}
& h^{\wedge} 2=0.1 \\
& B=1 / 2,(2 \omega+3) / 3=1
\end{aligned}
$$

Is there a PPN limit?

No, since there is no weak field Newtonian limit for the GR solution
So, alternatively, one should to consider the strong field limit

Figure 2: Tests of General Relativity placed on an appropriate parameter space. The long-dashed line represents the event horizon of Schwarzschild black holes.
[From: D. Psaltis, arXiv: 0806.1531]

Figure 1: A parameter space for quantifying the strength of a gravitational field. The x-axis measures the potential $\epsilon \equiv G M / r c^{2}$ and the y-axis measures the spacetime curvature $\xi \equiv G M / r^{3} c^{2}$ of the gravitational field at a radius r away from a central object of mass M. These two parameters provide two different quantitative measures of the strength of the gravitational fields. The various curves, points, and legends are described in the text.

Somewhat inconclusive

Conclusions

Solutions with hyperbolic spatial sections exhibit repulsive gravity, naked singularities, and no newtonian weak field limit

The corresponding generalised ST solution has a larger parameter space, allowing some stationary, bound periodic orbits, but inherits the lack of a newtonian weak field limit of the GR solution.

One is thus driven to the need of considering the opposite strong field limit, and this means resorting to the investigation of tensor deformations of the vacuum metrics (gravitational waves) in a gravity theory dependent way. (In construction...)

THANKS FOR LISTENING

Acknowledgements: The authors acknowledge the financial support of FCT under the grants PTDC/FIS/102742/2008 and CERN/FP/109381/2009

