An ancient extrasolar system with five sub-Earth-size planets

Tiago Campante^{1,2}

¹University of Birmingham, UK

²Stellar Astrophysics Centre (SAC), Aarhus University, Denmark

September 18, 2014

- also KIC 6278762, HIP 94931
- spectral type K0V
- over 0.5 $\operatorname{arcsec} \operatorname{yr}^{-1}$
- *V* = 8.86
- *d* = 36 pc
- iron-poor and overabundant in α elements (e.g., Si and Ti)

Atmospheric parameters

Parameter	Value
$T_{\rm eff}$ (K)	5046 \pm 74 (44)
$\log g_{\text{spec}}$ (dex)	$\textbf{4.595} \pm \textbf{0.060}$
[Fe/H] (dex)	-0.55 ± 0.07 (0.03)
[Si/H] (dex)	-0.28 ± 0.02
[Ti/H] (dex)	-0.30 ± 0.05

A member of the thick disk (I)

A member of the thick disk (II)

Possible extragalactic origin?

- member of the Arcturus stream
- named after Arcturus (brightest star in northern celestial hemisphere)
- these stars travel 2 kpc above Galactic plane
- extragalactic origin vs. dynamical origin within Galaxy

Hierarchical triple system

- fainter companion at 1.8 arcsec
- high-resolution imaging with Robo-AO
- 3.94 % dilution
- the two components are co-moving
- secondary comprises two M dwarfs!

- short cadence: Q4.2, Q6, Q15–17
- record-breaking $\Delta \nu$ at 180 $\mu {\rm Hz}$
- stellar properties from grid-based modeling
- 1.9 % relative precision on R and 1.1 % on $\langle \rho \rangle$

Stellar properties

Parameter	Value
M/M_{\odot}	$\textbf{0.758} \pm \textbf{0.043}$
R/R_{\odot}	$\textbf{0.752} \pm \textbf{0.014}$
$\log g_{\rm seis}$ (dex)	$\textbf{4.5625} \pm \textbf{0.0095}$
$\langle \rho \rangle$ (g cm^{-3})	$\textbf{2.493} \pm \textbf{0.028}$

Asteroseismic analysis (II)

- detailed frequency modeling
- GARSTEC, ASTEC, YREC, MESA, and AMP codes used
- 11.2 billion years old!
- 9 % precision on age estimate
- oldest known system of terrestrial-size planets

Transit analysis

- 4 years of long-cadence data
- five-planet transit model
- affine-invariant MCMC algorithm
- took into account dilution

A system of terrestrial-size planets

- KOI-3158.01 is Mercury-sized
- intermediate planets are Mars-sized
- KOI-3158.05 smaller than Venus
- from the mini-Neptunes around Kapteyn's star and Kepler-10's super-Earths to the terrestrial-size regime

Highly-compact system

- orbital periods under 10 days
- ... or within 0.08 AU
- period ratios close to strong 5:4, 4:3, 5:4, and 5:4 first-order MMRs
- system fits within orbit of Kepler-11's innermost planet
- compact systems make up $\sim 1 \%$ of *Kepler* candidate hosts

- proximity to strong resonances points to dynamical evolution
- convergent inward migration is likely mechanism
- tides then push planets wide of exact commensurability
- will make an interesting case study!

System validation

- only plausible FP of 4 planets + 1 background EB rejected at 99.9 % level
- no background stars in DSS archival data
- non-randomness of observed multi-resonant chain
- dynamical instability if planets were to orbit M-dwarf companion

DSS POSS-I (epoch 1945-58) DSS POSS-II (epoch 1984-99)

- giant-planet hosts: metal-rich
- small-planet hosts: more diverse composition
- → terrestrial-size planets may have started to form earlier
- (sub-)Earth-size planets have formed throughout most of Universe's history
- ancient life in the Galaxy?

Buchhave et al. (2012)

Implications (II)

- α elements critical for planet formation in iron-poor environments
- thick-disk stars overabundant in α elements in low-metallicity regime
- ⇒ thick-disk (and high-α halo) stars were likely hosts to first Galactic planets
- ancient systems around KOI-3158 and Kepler-10 help pinpoint beginning of era of planet formation

Tiago L. Campante^{1,2}, Thomas Barclay^{3,4}, Jonathan J. Swift⁵, Daniel Huber^{3,6}, Vardan Zh. Adibekyan⁷, William Cochran⁸, Christopher J. Burke^{6,3}, Howard Isaacson⁹, Elisa V. Ouintana^{6,3}, Guy R. Davies^{1,2}, Víctor Silva Aguirre², Darin Ragozzine¹⁰, Reed Riddle¹¹, Christoph Baranec¹², Sarbani Basu¹³, William J. Chaplin^{1,2}, Jørgen Christensen-Dalsgaard², Travis S. Metcalfe^{14,2}, Timothy R. Bedding^{15,2}, Rasmus Handberg^{1,2}, Dennis Stello^{15,2}, John M. Brewer¹⁶, Saskia Hekker^{17,2}, Christoffer Karoff^{2,18}, Rea Kolbl⁹, Nicholas M, Law¹⁹, Mia Lundkvist², Andrea Miglio^{1,2}, Jason F, Rowe^{3,6}, Nuno C. Santos^{7,20}, Christa Van Laerhoven²¹, Torben Arentoft², Yvonne P. Elsworth^{1,2}, Debra A. Fischer¹⁶, Steven D. Kawaler²², Hans Kjeldsen², Mikkel N. Lund², Geoffrey W. Marcy⁹, Sérgio G. Sousa^{7,20}, Alessandro Sozzetti23 & Timothy R. White24