Testing of the Kibble-Zurek Mechanism in Superconductive Analogs

TA Girard Nuclear Physics Center University of Lisbon

Topological Defects

phase transition

Kibble – Zurek mechanism

defect type depends on the symmetry broken in the phase transition

cosmological defects:

- cosmic strings
- monopoles
- domain walls
- textures
- •

cosmology in the laboratory

$$\mathbf{N} = \mathbf{f} \frac{1}{\xi_0^2} \left(\frac{\tau_0}{\tau_Q} \right)^{\sigma}$$

phase transitions are GENERIC:

$$(QFT) \qquad \mathbf{F}(\boldsymbol{\varphi}) = \frac{1}{2m_{e}} | ih \nabla \boldsymbol{\varphi} - (e/c) \mathbf{A} \boldsymbol{\varphi} |^{2} + \alpha \boldsymbol{\varphi}^{2} + \frac{\beta}{2} \boldsymbol{\varphi}^{4} + \boldsymbol{\gamma} \boldsymbol{\varphi}^{3},$$

(G-L)
$$f(\boldsymbol{\varphi}) = \frac{1}{2m_{e}} | ih \nabla \boldsymbol{\varphi} - (e/c) \mathbf{A} \boldsymbol{\varphi} |^{2} + \alpha \boldsymbol{\varphi}^{2} + \frac{\beta}{2} \boldsymbol{\varphi}^{4} - \frac{1}{2} \boldsymbol{\mu} \cdot \mathbf{H},$$

low energy tests

CM defect

liquid Xstals (maybe) domains
He4 (yes, no...) vortices
He3 (yes) vortices
Type-II superconductors (no, yes, maybe) vortices

PROBLEM : " pair production"

PROBLEM : defect dissipation

[Ghinovker, Shapiro & Shapiro: PL A260 (1999) 112]

 $\tau_{defect} \sim 10^{-9} \text{ s}$ << SQUID sensitivity

$$\Delta N = n_{+} - n_{-}$$

$$\sim \frac{1}{\pi} \sqrt{\ell/\xi_{Zurek}} \sim 140 \phi_{0}/cm^{2}$$

$$\sim N^{1/4}$$

$$\sim |dT/dt|^{1/8}$$

soooo..... the Lisbon story

1. type-I materials

Hindmarsh & Rajantie: PRL 85 (2000) 4660

BUT *a priori* yield a $10^2 - 10^4$ lower defect density because of generally larger ξ_0 .

sample superconducting properties

	ξ ₀ (μ)	λ _L (μ)	T _D (K)	H _c (G)	T _c (K)	К
rhenium	0.15	0.06	415	205	1.7	0.4
vanadium	0.047	0.038	383	1408	5.4	0.8

2. Radioactive source = "hotspot"

D.J. Goldie, N.E. Booth, R.J. Gaitskell and G.L. Salmon in Proc. SQUID'91 (Springer-Verlag, Berlin, 1992) 27.

hotspot rapidly expands:

R ~
$$[6D/\Gamma_{qp}]^{1/2}$$
 ~ 8 - 80 μ m

with D ~ 0.1-10 m²/s Γ_{qp} ~ 10 ns⁻¹

hotspot decay:

qp diffusion when phonon and qp scattering rates become equal at a few times the gap energy:

estimated $\tau_Q < 10^{-9} s$

energy deposited in $\emptyset \leq 1 \, \mu m$

$$\frac{\Delta E}{V} = \frac{4 \cdot 10^{-2} \text{ fJ}}{< 1 \mu \text{m}} = \int_{T}^{T+\Delta T} C_{S} dT \sim 1.5 \frac{\text{MeV}}{\mu \text{m}^{3}} \implies \Delta T = 1.4 \text{ K}$$
(locally)

09/13

rhenium [12.5 μm, 330 mK]

assume:

- complete purging of ϕ_{-} population

- nominal hotspot diameter of 40 μm

6 keV (⁵⁵Fe) source

114 events/s, or $\sim 2 \times 10^5$ events per hour

after correction for geometry (0.48) and X-ray

absorption (0.99).

K-Z mechanism : N ~ 12 $\phi_0 \ \mu m^{-2}$

each quench = S > $10^3 \phi_0$, ie. corresponds to one recorded

signal event

60 keV (²⁴¹Am) source

141 events/s, or $\sim 2 \times 10^4$ events per hour after correction (0.48 and 0.08, respectively).

vanadium [10 μ**m, 4.2 K]**

	ξ ₀ (μ)	λ _L (μ)	T _D (K)	H _c (G)	T _c (K)	κ
vanadium	0.047	0.038	383	1408	5.4	0.8

K-Z mechanism : N ~ 120 $\phi_0 \ \mu m^{-2}$

6 keV (⁵⁵Fe) source

60 keV (²⁴¹Am) source

141 events/s, or $\sim 2 \times 10^4$ events/hour after correction (0.48 and 0.08, respectively).

OBSERVATIONS

- > S is generally above any ΔN estimate by 10 10³
- > S is generally below any KZ based prediction by 10 10²

Since only events with n > 500 ϕ_0 measured,

- => some events with less than 500 ϕ_0
- => incomplete purging of ϕ and/or evaporation

SUMMARY

- "new" type-I experiments with geometric barrier & locallyinduced quenches observe anomalous flux generation
 - * = **NOT** predicted "classically"
 - * but, IN consistent with Kibble-Zurek N or Δ N prediction

> next phase :

- * replace fast-pulse with fast SQUID
- * increase irradiation sources

" Baked Alaska "

A. Leggett: Phys. Rev. Lett. 53 (1984) 1096

heat carried outwards in rapidly expanding shell at ~ Fermi velocity

(interior remains ~ base temperature)

 $dT/dt \sim 2 \times 10^{13} \text{ K/s}$