Cosmology from the high redshift 21cm line or Fast Large Volume Simulations of the 21cm signal from the Reionization and pre-Reionization Epochs

arXiv:0911.2219v1

Mário Santos IST – CENTRA IBERICOS 2010

Collaborators: Luis Ferramacho, Marta Silva, Alexandre Amblard, Asantha Cooray

21cm radiation

Measurements of neutral fraction are required at a range of redshifts and along many lines-of sight => 21cm tomography.

Hyperfine transition (electron/proton spin in hydrogen atom):

1420 MHz (21 cm)

- 1) Directly probes neutral hydrogen
- Hydrogen 75% baryonic mass in the Universe
- 1) Provide redshift information
- 2) No need for bright background sources

excitation temperature of 21 cm

transition \equiv spin temperature T_s :

 $\frac{n_1}{n_0} = \frac{g_1}{g_0} e^{-h\nu_{21}/kT_S}$

Effect on CMB

CMB (T_{CMB})

HI (T_K)

 T_{f}

Ts

Intensity of CMB radiation will increase or decrease depending on temperature of the source

Radiative transfer:

 $T_f = T_{CMB} e^{-\tau_{21}} + T_S (1 - e^{-\tau_{21}})$

Brightness temperature

As seen from Earth - $T_b(\nu) = (T_f - T_{CMB}(z)/(1+z))$:

 $T_b(\nu) \sim 27(1+\delta_b) x_{HI} \left(1 - \frac{1+z}{H(z)} \frac{\partial v}{\partial r}\right) \left(\frac{T_S - T_{CMB}}{T_S}\right) \left(\frac{1+z}{10}\right)^{1/2}$ (mK)

- 3D mapping of HI possible angles + frequency
- δ_{b} baryon density perturbation
 - ∂v/∂r peculiar velocity gradient (gravitational
 Potential CDM)
- _{xHI} neutral fraction
- T_s spin temperature
- "Astrophysical"

"Cosmological"

Spin Temperature

$$T_S^{-1} = \frac{T_{CMB}^{-1} + (x_\alpha + x_c)T_K^{-1}}{1 + x_\alpha + x_c}$$

- Already assuming Ly α color temperature = T_K
 - Coupling mechanisms:
 - Radiative transitions (CMB)
 - Collisions (x_c)
 - Wouthuysen-Field effect $(x_{\alpha}) x_{\alpha} \propto J_{\alpha}$ (Ly α flux)
- Brightness temperature non-zero when T_K ≠ T_{CMB} and x_α + x_c > 0 (coupling saturates when >> 1)

$$T_b \propto \frac{T_S - T_{CMB}}{T_S}$$

Cosmological evolution

How to measure the signal?

Signal at 1420MHz redshifts to 60MHz-200MHz

With resolution ~ 2', telescope size must be \sim 2 Km \rightarrow Need radio interferometers

LOFAR: Netherlands Freq: 120-240 MHz Baselines: 50m-100km

MWA: Australia Freq: 80-300 MHz Baselines: 10m - 1.5km

SKA: S. Africa/Australia Freq: 70 MHz-35 GHz Baselines: 20m - 3000km ?

21cm power spectrum – Analytical / Simulation

Black - simulation Blue - semi-analytical model

Analytical:

- OK for z < 10 (e.g. first generation experiments)
- At z≥10 (SKA...) X-ray and Lyα fluctuations are important – need further improvements
- Also 21cm signal is non-Gaussian – P(k) enough?

Full Simulation:

- Description from first principles
- But slow to run hard to check parameter space
- Limited to small volumes ~ (143 Mpc)³

EoR 21cm measurements Constraints

 $\delta_{T_b} = \beta \delta + \beta_x \delta_{x_{HI}} + \beta_T \delta_{T_k} + \beta_\alpha \delta_\alpha - \delta_{\partial v}$

TABLE VIII: Forecasted 1- σ uncertainties when $T_S >> T_{\gamma}$ and b_{x_H} is large

	x_{H1}	x_{H2}	$b_{x_{H_1}}$	$b_{x_{H2}}$	$R_{x_{H_1}}$ (Mpc)	$R_{x_{H_2}}$ (Mpc)	$\Omega_m h^2$	$\Omega_b h^2$	Ω_{Λ}	n_s	$\delta_H \times 10^5$
Values	0.2	0.4	-14.0	-5.7	50	6	0.127	0.0223	0.76	0.951	6.229
SKAb	0.04	0.08	0.42	0.04	3.9	0.4	0.020	0.007	0.0025	0.018	-
SKA	0.11	0.23	0.58	0.11	11.5	1.3	0.058	0.022	0.0048	0.040	-
MWA5000	0.19	0.40	1.07	0.65	29.3	3.5	0.145	0.047	0.017	0.174	-
LOFAR	8.2	16.7	35.2	9.0	936	111	4.5	1.70	0.30	3.01	-
MWA	4.1	8.6	36.8	28.0	889.	110	4.4	1.23	0.70	7.39	-
Planck	-	-	-	-	-	-	0.0023	0.00017	0.011	0.0047	0.03
SKAb + Planck	0.004	0.009	0.37	0.04	0.53	0.04	0.0019	0.00017	0.002	0.0041	0.03
SKA + Planck	0.006	0.015	0.50	0.08	0.71	0.05	0.0021	0.00017	0.004	0.0045	0.03
MWA5000 + Planck	0.011	0.044	0.71	0.36	1.12	0.11	0.0022	0.00017	0.009	0.0046	0.03
LOFAR + Planck	0.12	0.32	30.1	3.7	44.0	1.31	0.0023	0.00017	0.011	0.0047	0.03
MWA + Planck	0.32	1.17	22.4	13.2	23.3	3.1	0.0023	0.00017	0.011	0.0047	0.03

Santos and Cooray, PRD 2006

- X_{H} neutral fraction, $R_{x_{H}}$ bubble size
- Frequency range: 135MHz 167 MHz (7.5 < z < 9.5)
- Marginalized over foregrounds

TAT/

- Learn a lot about statistical properties of reionization astrophysics, not possible by other means...
- Not so good for Cosmology

EoR 21cm measurements Constraints

 $\delta_{T_b} = \beta \delta + \beta_x \delta_{x_{HI}} + \beta_T \delta_{T_k} + \beta_\alpha \delta_\alpha - \delta_{\partial v}$

OPT MID/PES

TABLE V: How cosmological constraints depend on the ionization power spectrum modeling and reionization history. We assume observations of 4000 hours on two places in the sky in the range of z = 6.8 - 8.2 that is divided into three z-bins centered at z = 7.0, 7.5 and 8.0 respectively, $k_{\text{max}} = 2 \text{Mpc}^{-1}$, $k_{\text{min}} = 2\pi/yB$ and a quasi-giant core configuration. 1σ errors of ionization parameters in the MID model, marginalized over other vanilla parameters, are listed separately in Table VI.

	Vanilla Alone												
	Model	$\Delta \Omega_{\Lambda}$	$\Delta \ln(\Omega_m h^2)$	$\Delta \ln(\Omega_b h^2)$	Δn_{s}	$\Delta \ln A_s$	$\Delta \tau$	$\Delta \bar{x}_{\rm H}(7.0)^{\ a}$	$\Delta \bar{x}_{H}(7.5)$	$\Delta \bar{x}_{H}(8.0)$	$\Delta \Omega_{\mathbf{k}}$	Δm_{ν} [eV]	$\Delta \alpha$
LOFAR	OPT	0.025	0.27	0.44	0.063	0.89					0.14	0.87	0.027
	MID	0.13	0.083	0.15	0.36	0.80					0.35	12	0.17
MWA	OPT	0.046	0.11	0.19	0.022	0.37					0.056	0.38	0.013
	MID	0.22	0.017	0.029	0.097	0.76					0.13	9.6	0.074
SKA	OPT	0.0038	0.044	0.083	0.0079	0.16					0.023	0.12	0.0040
	MID	0.014	0.0049	0.0081	0.012	0.037					0.043	0.36	0.0060
	OPT	0.00015	0.0032	0.0084	0.00040	0.015					0.00098	0.011	0.00034
FFTT	MID	0.00041	0.00038	0.00062	0.00036	0.0013					0.0037	0.0078	0.00017
	PESS	1.1	0.016	0.037	0.010	0.19						0.10	0.0058
Planck		0.0070	0.0081	0.0059	0.0033	0.0088	0.0043				0.025	0.23	0.0026
	OPT	0.0066	0.0077	0.0058	0.0031	0.0088	0.0043	0.0077	0.0084	0.0093	0.0051	0.060	0.0022
+LOFAR	MID	0.0070	0.0081	0.0059	0.0032	0.0088	0.0043	0.18	0.26	0.23	0.018	0.22	0.0026
	PESS	0.0070	0.0081	0.0059	0.0033	0.0088	0.0043	0.54	0.31	0.24	0.025	0.23	0.0026
	OPT	0.0067	0.0079	0.0057	0.0031	0.0088	0.0043	0.0065	0.0067	0.0069	0.0079	0.027	0.0014
+MWA	MID	0.0061	0.0070	0.0056	0.0030	0.0087	0.0043	0.32	0.22	0.29	0.021	0.19	0.0026
	PESS	0.0070	0.0081	0.0059	0.0023	0.0088	0.0043	3.8	0.87	0.53	0.025	0.23	0.0026
	OPT	0.0031	0.0038	0.0046	0.0013	0.0087	0.0042	0.0060	0.0060	0.0060	0.0017	0.017	0.00064
+SKA	MID	0.0036	0.0040	0.0044	0.0025	0.0087	0.0043	0.0094	0.014	0.011	0.0039	0.056	0.0022
	PESS	0.0070	0.0081	0.0059	0.0033	0.0088	0.0043	0.061	0.024	0.012	0.025	0.21	0.0026
	OPT	0.00015	0.0015	0.0036	0.00021	0.0087	0.0042	0.0056	0.0056	0.0056	0.00032	0.0031	0.000093
+FFTT	MID	0.00038	0.00034	0.00059	0.00033	0.0086	0.0042	0.0013	0.0022	0.0031	0.00023	0.0066	0.00017
	PESS	0.0055	0.0064	0.0051	0.0030	0.0087	0.0043	0.0024	0.0029	0.0040	0.025	0.020	0.0010

Mao et al, PRD 2008

Still not competitive with a weak lensing survey like LSST, JDEM...

Note: Field of View...

- 21cm experiments will have low resolution but large FoV
- Need larger simulations for proper testing of the observation pipeline foreground removal...
- High dynamic range:

- Need ~ 1000 (comoving) Mpc to achieve 5x5 deg² FoV (high z)
- But also need to resolve 10⁸ solar mass halos 0.14 Mpc...
- (7000)³ cells!

New Simulation

- Semi-numerical: based on 3-d realizations of the density field
- Extended to very large Volumes (1000 Mpc)
- Extended to very high redshifts (z~25)
- Large dynamical range
- Much faster than numerical simulations (but calibrated to them)
- Easy to run on your "small" computer!
- Defined by small set of parameters easy to change

(See also Mesinger and Furlanetto 07, Zahn et al. 07, Thomas et al. 09)

From density to ionization field

- 3-d Monte Carlo realization of dark matter
- Halo catalog (M $\geq 10^8 M_{\odot}$)
- Velocity field Non-linear corrections (Zel'dovich)
- Ionization bubbles around halos (efficiency parameter)
- Halos/bubbles defined through excursion-set formalism
- Include LOS velocity gradient

Ionization field

Extending to Very Large Volumes

- \sim 1000 Mpc, (1800)³ cells M_{min}=10¹⁰ M_{\odot}
- Add 10⁸ 10¹⁰ solar mass halos from Poisson using mass function with bias to density field (Wilman et al. 08)

Halo mass function (z=10): Red – theory (Sheth & Tormen 99 + Jenkins et al. 01) Blue – 1000 Mpc simulation Green – N-body simulation (Trac 08)

Halo mass power spectrum: Blue – 1000 Mpc Red – 1000 Mpc (non-linear corrections) Green – N-body (Trac 08)

Extending to Very Large Volumes...

Dotted: our sim. Solid: N-body dark matter sim. Black: M < $10^9 M_{\odot}$ Yellow: $10^9 M_{\odot} < M < 10^{10} M_{\odot}$ Blue: M > $10^{10} M_{\odot}$

Power Spectrum: Ionization fraction

- For same volumes or low xi P(k) agrees
- For high x_i need large volumes to get right power spectrum on large scales...

Large FoV...

z=9.0 xi=0.54

- At z ~ 8 we get 6x6 deg²
- Good to test observation pipeline (foreground removal)

Extending to very high redshifts

X-ray heating

- Need to calculate HI Spin temperature:
 - Use halo catalog to calculate SFR
 - Use power law model for Ly_{α} / x-ray emission (4 parameters easy to change)
 - Calculate IGM temperature from heating due to x-rays
 - Calculate coupling due to Ly_{α}
 - Calculate flux through convolution with SFR + FFT
 - Also includes collisional coupling

Extending to very high redshifts: Fluctuations...

- Ly_{α} traces star formation
- Important for $z \gtrsim 15$
- Dominates over collisions up to z=22

X-ray heating

- Assumed starbursts for x-ray heating (but highly uncertain)
- Heating is inhomogeneous mostly done by ~100 eV Xrays
- Important for z > 10!

$$T_b \propto (1 - T_{CMB}/T_K)$$

End-to-end Simulation

- z > 19 cold gas, Lyα fluctuations
- z ~ 18 heating starts
- z ~ 12 Reionization starts

21cm signal: redshift evolution

What can we learn? e.g.: Determining the first sources

Constraining galaxies at $z \sim 20$ through Ly α emission

Contributions to the signal

Constraints

- "SKA type" experiment can constrain signal at z ~ 20:
 - 4000 m²/K @ 100 MHz | 8 MHz bandwidth
 - $10x10 deg^2 FoV \qquad | 5 Km core$
- Use dependence on angle with LoS to separate the signal (uncorrelated part depends only on Lyα...)

Summary

- Presented a new method to generate very large volume, high redshift simulations of the 21cm signal
- Useful to generate sky models for future 21cm experiments (crucial to test calibration issues and foreground removal)
- Code will be publicly available (SimFast21)
 - Easy to run/play no need for supercomputers
 - "Fast" + small number of parameters good to probe the huge intrinsic parameter space
- Room for continuous improvement!
 - Check <u>www.SimFast21.org</u> (<u>mgrsantos@ist.utl.pt</u>)
 - See <u>http://s-cubed.physics.ox.ac.uk</u> (SKADS Simulated Skies) for simulations (fits files) + point sources, etc

M. Santos, L. Ferramacho, M. Silva, A. Amblard, A. Cooray, MNRAS, 2010, http://arxiv.org/abs/0911.2219

