Exact Scalar-tensor Cosmologies:
Solutions, Asymptotic Behaviour and Dualities

José Pedro Mimoso

Physics Dep. Science Fac. & CAAUL
University of Lisboa

Collaboration with:

Tiago Charters (Inst. Politech. Lisboa & CAAUL)

1P, Mimoso “IBERICOS2010" : Porto, March 30, 2010 1



We investigate a mechanism that generates exact solutions of scalar-tensor
cosmologies with a perfect fluid. We work in the so-called Einstein frame,
recovering known solutions and obtaining new ones. The method is considerably
simpler than previous methods found in the literature, namely the method
devised by Barrow and Mimoso. We also discuss the existence of form-invariance
dualities that relate pairs of solutions.
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Scalar-tensor gravity theories in cosmology

* Kaluza-Klein type theory to underly Dirac’s Large Number
Hypothesis (P. Jordan . 1940ies)

** Brans-Dicke theory to account for Mach principle of inertia (1961)

*** Non-minimal coupling and Conformally coupled scalar field theory (1968-70)

**** Kaluza-Klein type and String theory unification proposals.
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we can rewrite the above field equations as
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where the density p = 3M/ 81ra3'? for a ba.rdfropic fluid
with M a constant. The prime denotes differentiation
with respect to . Our variables are akin to those used
by Lorenz-Petzold [17] when solving for the Brans-Dicke
theory. To that extent the method we explore here is
a generalization of his method of obtaining decoupled
equations. Note that whenever X is negative this must
correspond to a negative value for ¢. In what follows,
unless otherwzse exphc:ltly stated we shall assume that
w > —3/2, to guarantee the positiveness of the function
under the square root in Eq. (3.7), although it would
be stralghtforwa.rd to redeﬁne Y(¢) for the case of w <
—-3/2.

T/h.ls system considerably simplifies for the two partic-
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Egs. (5)—(7) and a late period during which the solutions
asymptote towards the matter-dominated power-law be-
havior. In what follows no restrictive assumption will be
made regarding the boundary conditions satisfied by ¢(¢)
at ¢ = 0 and so our analysis will be kept fully general.

The system of equations (5)—(8) allows considerable
simplification in the cases where the trace of the energy-
momentum tensor vanishes and the w(¢) theories are con-
formally related to general relativity [11]. In these cases,
the wave equation (6) is sourceless and the general rela-
tivity solutions always arise as a particular (¢ = const)
case of the general solutions. By exploiting this situa-
tion, exact vacuum and radiation cosmological solutions
for scalar-tensor gravity theories for all values of k have
been found by one of us [14].

To address the remaining nonvacuum fluid cases (v #
4/3) we resort to a generalization of the method of in-
tegration used by Gurevich et al. [20] in their study of
Brans-Dicke (BD) theory to the more complicated cases
where w depends on ¢. Our procedure will be applied
to the & = 0 models.

‘We introduce a new time variable n via

dt = a3Cr—1) 4/ 2 3 dn (9)

(we assume 2w + 3 > 0) and two new dynamical variables

z = [¢a3(1_“"%a3] s (10)
v=[wem el (1)

The k£ = 0 field equations (6) and (7) reduce to
v =M (4—3v) (12)

and
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where the prime denotes differentiation with respect to
7 and M is defined by 87p == 3Ma—3Y. In addition to
these equations, the Friedmann equation (5) yields the
constraint

2
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It is straightforward to integrate Eqgs. (12) and (13). The
solutions are

y=M(@A—-37)(n—m) , (15)
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where 7, and C are integration constants.
Now we differentiate y using the definition (11) and
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By introducing another function g(n) we can absorb f(7)

_into

o) = Fm) + X2 (g —m)? + D, (20)

where D is the integration constant arising from solving
the Bernoulli equation (18). The solutions to Eq. (18)
can be cast into the particularly simple form
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which follows from Eq. (17). In terms of f(n) the be-
havior of the coupling w(¢), which defines the theory, is
given by

n— ’71
g(m) @D

and
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where fo is another arbitrary constant. The w(¢) depen-
dence is obtained by solving Eq. (21) with respect to ¢,
whenever this is possible. In practice a theory can be
chosen by specifying the generating function g(n) from
which ¢(n) follows from Eq. (21) and hence a(n) from
Ea. (22), f(n) from Eq. (20), w(¢) from Eq. (23), and
n(t) from Eq. (9) if all the integrals can be performed.

It is worth noticing that the constant 7;, which was
introduced in Eq. (15), can be set equal to zero without
loss of generality. This merely amounts to a translation
of the origin of the time variable. Henceforth, we use this
freedom and take 773, = 0 = ¢.
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Flat Friedmann Universe with one scalar field

3
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General Relativity Scalar-tensor theories

- N— 3a2: ¢'_2

3@2:¢2 V) = m(@)p + 5 +V(9)

¢ ’ . OV ($) __ om(4)
¢ +3H¢ + Y = —p Y

3~ (F 1) b =-3H(p+p)+ 6_m¢

; P p+p p(w

. 72

Py =39 m(¢)=m0exp(—ﬁ(3y—4)a)

J.P. Mimoso ‘IBERICOS2010" : Porto, March 30, 2010

8




Definining new variables
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Only one variable is independent
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Autonomous dynamical systems for STT
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[Nunes & Mimoso PLB 2000]
This generalises to STT the use of ¢

In GR [Muslimov 1989, Lidsey 1991,Salopek and
Bond, Charters Mimoso 2009]

Everything reduces to one ODE
With the coefficients slightly modified

dx

X — =

dg

(o2 (eeetng)
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Choosing x(®) we obtain “everything”

X (¢)

(@) = ( jexp [ x@)dg)

H)a® =+ fm, exp (—%jx@)dvﬁj

T
a:aoexp(jx(m]

jx(¢>H(¢>
2 = x> (p)exp (- [x(9) dg)
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Catalogue of exact solutions
Some examples

Brans-Dicke
X(¢) = ﬂa = cte theory
5 i(4—3y
— AL 2-
x() = ¢ do+3z2| 22757 | @ 7
A\ 2-y D,
: N (o \2HE)
= — — A\ 4-3
)= s 32| 2|23 |2 '
A2y D,
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x(¢) = f tan Ag

Conformally coupled s.f.

Barker’s theory
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Assimptotic behaviour of STT
£3——]( 1——)x+ ”7)

x=0= m'/m=90

l.e. GR,
/ radiation
\

x=x,=> m'/m = A = const l.e. BD

Q'= x

Fixed points at finite ®

Fixed points at infinite ®
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Duality

> ¢ =¢

Themap x(§)=21-> X(g)=41 =1/c

H (¢) = cH (¢)

e.g. c=-1

Now the dualities may relate different scalar-tensor
theories!
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Conclusions

Exact ST solutions with a barotropic y- perfect fluid, both
known and new, are derived from an adequate choice
of a generating function x(®).

In GR, this essentially depends on the equation of state

and determines the form of the potential.

The integration procedure which is here produced

is a lot simpler than the methods found in the

literature so far.

We found a form-invariance duality

between two scalar-tensor cosmologies. Hope to extend this
to more general cases...

1P, Mimoso “BERICOS2010" : Porto, March 30, 2010 16



Our procedure also encompasses scalar-tensor gravity
theories with a barotropic y- perfect fluid.

The integration procedure which is here produced
is a lot simpler than the methods found in the
literature so far.

We found a duality between different scalar-tensor cosmologies.
Hope to extend this to more general cases...

THANKS for listening !
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