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Device a formalism describing primordial fluctuations
Independently of the precise nature of primordial matter



Philosophy

Dunno much about
primordial matter. What
can | say about
primordial perturbations
now then.....22?




Entropic perturbations
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For arbitrary mixtures of modes introduce an “effective” sound speed
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L= P(X, )

OPna = [P,cb (1 + 632) — QCSZXP’qu] 0
+ [P x (1 —c¢s?) —2¢,°XPxx]| 60X

0 In the super-horizon limit

Christopherson & Malik, arKiv:0809.3518
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Ingredients

0G 1 = 2ZE6T,,

T3 = (e + p)u“ug — pd*®

B



Ingredients
0G ., = BZE6T),,

1% = (8 —I—p)uo‘uﬁ = péaﬁ

=tip T2

50 we consider primordial perturbations with arbitrary
mixtures of adiabatic and entropy modes and allow for
k varying equation of state w and speed of sount c, ‘



The “v"-equation
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Non-adiabatic factors

Null-measure of adiabaticity, can
introduce exponential tilts into
perturbation power spectrum.

Relative weight of {_, to v.

Relative weight of  , to v. So ratio
of U and v gives a measure of the
departure from adiabaticity in
termsofv.



Features & Phenomenology

Power spectrum of
curvature perturbation

Horizon crossing modes

Growing & decaying
modes

A Conserved super-
horizon charge
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A conserved super-horizon charge

0 = MfCa,d T Vga,d

= hea) (2 LG



Awesome!! Now
gimme a specific
model...




A Chaplygin gas-like example

Effectively have a two parameter model

”LUOCEZ’B C,. X &

Where adiabaticity corresponds to O = /6

and non-adiabaticity correspondingly to 87 % /6



Constraints & Classification

’LUOC&Q’8 C,. X &
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Solutions

We obtain two scale-invariant solutions
Adiabatic : W X 62
Non-adiabatic : (5 > 0 632 x 1

Both have to be implemented in a contracting
phase in order resolve the horizon problem.



simmary

* Formalis/m for non-adiabatic perfect fluid
perturhations

 Ageneralised cornserved super-horizon

quantity

 Aspecific model implementation, which gives
rise 10 Zwo new contracting, scale-invariant
solutions




