Based on: JN & Joao Magueijo, Non-adiabatic primordial fluctuations, arXiv: 0911.1907

411

Johannes Noller, IberiCos 2010, 29/03/2010

Structure Formation

Homogeneous background

+ small irregularities

Growth of structure via gravitational instability

Structure Formation

Homogeneous background

+ small irregularities

Growth of structure via gravitational instability

Device a formalism describing primordial fluctuations independently of the precise nature of primordial matter

Philosophy

Dunnomuchaboutprimordialmatter.WhatcanIsayaboutprimordialperturbationsnow then....???

Entropic perturbations

Adiabatic

Entropic

Entropic perturbations

For arbitrary mixtures of modes introduce an "effective" sound speed

$$c_{es}^2 \equiv \frac{\delta p}{\delta \varepsilon}$$

A single scalar field

$$\mathcal{L} = P(X, \phi)$$

$$\delta p_{na} = \left[P_{,\phi}\left(1+c_s^2\right) - 2c_s^2 X P_{,X\phi}\right] \delta \phi$$
$$+ \left[P_{,X}\left(1-c_s^2\right) - 2c_s^2 X P_{,XX}\right] \delta X$$

= 0 *in the super-horizon limit*

Christopherson & Malik, arXiv:0809.3518

Power Spectra

Ingredients

$$\delta G_{\mu\nu} = \frac{8\pi G}{c^4} \delta T_{\mu\nu}$$

 $T^{\alpha}{}_{\beta} = (\varepsilon + p)u^{\alpha}u_{\beta} - p\delta^{\alpha}{}_{\beta}$

Ingredients

$$\delta G_{\mu\nu} = \frac{8\pi G}{c^4} \delta T_{\mu\nu}$$

$$T^{\alpha}{}_{\beta} = (\varepsilon + p)u^{\alpha}u_{\beta} - p\delta^{\alpha}{}_{\beta}$$
$$= T^{\alpha}{}_{1\ \beta} + T^{\alpha}{}_{2\ \beta} + \cdots$$

So we consider primordial perturbations with arbitrary mixtures of adiabatic and entropy modes and allow for varying equation of state w and speed of sound c_s

The "v"-equation

 $v'' + (c_{es}^2 k^2 - \frac{z''}{z})v = 0$

 $z^2 \propto rac{(\mathcal{H}^2 - \mathcal{H}^{'})a^2}{\mathcal{H}^2} rac{1}{fc_{as}^2\mu^2}$

 $v \equiv z\theta = z(\mu f\zeta_{ad} - \nu\xi_{ad})$

Non-adiabatic factors

$$\frac{f'}{f} \equiv \frac{p'}{\varepsilon + p} + 3c_{es}^2 \mathcal{H}$$

Null-measure of adiabaticity, can introduce exponential tilts into perturbation power spectrum.

$$\mu' = \frac{(\mathcal{H}^2 - \mathcal{H}')a^2}{\mathcal{H}^2 f}\nu$$

Relative weight of ζ_{ad} to v.

$$\nu^{'} = \frac{\mathcal{H}f^{'}}{a^{2}}\mu$$

Relative weight of ξ_{ad} to v. So ratio of μ and \vee gives a measure of the departure from adiabaticity in terms of v.

Features & Phenomenology

Power spectrum of curvature perturbation

Horizon crossing modes

Growing & decaying modes

A Conserved superhorizon charge

$$P_{\theta}(k) \propto \frac{z''}{z^3 c_{es}{}^3}$$

$$c_{es}^2 k^2 = \frac{z''}{z}$$

$$z \ vs. \ z \int rac{d\eta}{z^2}$$

A conserved super-horizon charge

 $\theta \equiv \mu f \zeta_{ad} - \nu \xi_{ad}$

 $\zeta_{ad}' = \frac{(\nu \xi_{ad})'}{f\mu} - (\frac{\mu'}{\mu} + \frac{f'}{f})\zeta_{ad}$

Awesome!! Now gimme a specific model...

A Chaplygin gas-like example

Effectively have a two parameter model

 $w\propto arepsilon^{2eta}$ $c_{es}^2 \propto \varepsilon^{2\alpha}$

 $\alpha = \beta$ $\alpha \neq \beta$

Where adiabaticity corresponds to

and non-adiabaticity correspondingly to

Constraints & Classification

 $w \propto \varepsilon^{2\beta}$

 $c_{es}^2 \propto \varepsilon^{2\alpha}$

	Structure	Horizon Problem
Adiabatic	$P_{ heta} \propto t^{rac{2eta-2}{1+4eta}}$	$\left(k^2 ight)' \propto (\mathcal{H}^2)' < 0$
Non-adiabatic	$P_{ heta} \propto t^{rac{2lpha}{1+4eta}}$	$(k^2)' \propto (t^{-2})' < 0$

Solutions

We obtain two scale-invariant solutions

Adiabatic : $w\propto arepsilon^2$

Non-adiabatic : $\beta > 0$ $c_s^{\ 2} \propto 1$

Both have to be implemented in a contracting phase in order resolve the horizon problem.

Summary

- *Formalism* for non-adiabatic perfect fluid perturbations
- A generalised *conserved super-horizon quantity*
- A specific model implementation, which gives rise to *two new contracting, scale-invariant solutions*