
Gonzalo J. Olmo

Can Renormalization Change the Observable
Predictions of Inflation?

Gonzalo J. Olmo

Instituto de Estructura de la Materia - CSIC (Spain)

In collaboration with I.Agullo, J.Navarro-Salas, and L.Parker



● Motivation and Summary

● Tensor Modes

● Amplitude of TM

● Need for renormalization

● Renormalization Method

● Tensor Perturbations

● Scalar Perturbations

● Time Dependence

● Testable Effects

● Conclusions

The End

Gonzalo J. Olmo Porto, 29-31 March, IberiCos 2010 - p. 2/13

Motivation and Summary

■ Inflation provides a natural solution to thehorizon and flatness problems

of the hot Big Bang cosmology.



● Motivation and Summary

● Tensor Modes

● Amplitude of TM

● Need for renormalization

● Renormalization Method

● Tensor Perturbations

● Scalar Perturbations

● Time Dependence

● Testable Effects

● Conclusions

The End

Gonzalo J. Olmo Porto, 29-31 March, IberiCos 2010 - p. 2/13

Motivation and Summary

■ Inflation provides a natural solution to thehorizon and flatness problems

of the hot Big Bang cosmology.

■ Inflation also provides aQuantum Mechanical mechanismto account for

theorigin of small inhomogeneitiesin the early Universe, which represent

the seeds for structure formation.



● Motivation and Summary

● Tensor Modes

● Amplitude of TM

● Need for renormalization

● Renormalization Method

● Tensor Perturbations

● Scalar Perturbations

● Time Dependence

● Testable Effects

● Conclusions

The End

Gonzalo J. Olmo Porto, 29-31 March, IberiCos 2010 - p. 2/13

Motivation and Summary

■ Inflation provides a natural solution to thehorizon and flatness problems

of the hot Big Bang cosmology.

■ Inflation also provides aQuantum Mechanical mechanismto account for

theorigin of small inhomogeneitiesin the early Universe, which represent

the seeds for structure formation.

■ A relic background of gravitational wavesis also unavoidable if inflation

happened in the early Universe.



● Motivation and Summary

● Tensor Modes

● Amplitude of TM

● Need for renormalization

● Renormalization Method

● Tensor Perturbations

● Scalar Perturbations

● Time Dependence

● Testable Effects

● Conclusions

The End

Gonzalo J. Olmo Porto, 29-31 March, IberiCos 2010 - p. 2/13

Motivation and Summary

■ Inflation provides a natural solution to thehorizon and flatness problems

of the hot Big Bang cosmology.

■ Inflation also provides aQuantum Mechanical mechanismto account for

theorigin of small inhomogeneitiesin the early Universe, which represent

the seeds for structure formation.

■ A relic background of gravitational wavesis also unavoidable if inflation

happened in the early Universe.

■ Typically, an inflationary model predicts the value of 3 parameters:

◆ Scalar spectral indexns ⇒ Ps(k) = Ps(k0)
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■ Inflation provides a natural solution to thehorizon and flatness problems

of the hot Big Bang cosmology.

■ Inflation also provides aQuantum Mechanical mechanismto account for

theorigin of small inhomogeneitiesin the early Universe, which represent

the seeds for structure formation.

■ A relic background of gravitational wavesis also unavoidable if inflation

happened in the early Universe.

■ Typically, an inflationary model predicts the value of 3 parameters:

◆ Scalar spectral indexns ⇒ Ps(k) = Ps(k0)
(

k
k0

)ns−1

◆ Tensor spectral indexnt ⇒ Pt(k) = Pt(k0)
(

k
k0

)nt

◆ Tensor-to-scalar ratior ⇒ r ≡ Pt
Ps

■ These parameters are not independent.

■ Consistency conditionfor (single-field) slow roll inflation: r ≡−8nt
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■ If observations determine thatr 6= −8nt thensingle-field slow roll
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Motivation and Summary

■ So far, observations just provide upper limits on tensor fluctuations.

■ Forthcoming high-precision measurements may detect effects of relic

gravitational waves and offer a test of theconsistency condition

r ≡−8nt

■ If observations determine thatr 6= −8nt thensingle-field slow roll

inflation would be ruled out !!!

We shall argue thatQuantum Field Renormalizationsignifi-

cantly influences the predictions of primordial perturbations

and hence the expected measurable imprint of inflation on the

CMB. In particular, we will find anew consistency condition:

r = 4(1−ns−nt)+
4n′t

n2
t −2n′t

(

1−ns−
√

2n′t +(1−ns)2−n′t
2
)
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Motivation and Summary

■ So far, observations just provide upper limits on tensor fluctuations.

■ Forthcoming high-precision measurements may detect effects of relic

gravitational waves and offer a test of theconsistency condition

r ≡−8nt

■ If observations determine thatr 6= −8nt thensingle-field slow roll

inflation would be ruled out !!!

We shall argue thatQuantum Field Renormalizationsignifi-

cantly influences the predictions of primordial perturbations

and hence the expected measurable imprint of inflation on the

CMB. In particular, we will find anew consistency condition:

r = 4(1−ns−nt)+
4n′t

n2
t −2n′t

(

1−ns−
√

2n′t +(1−ns)2−n′t
2
)

■ I will try to justify why renormalization is neededand how it affects

the predictions of single field slow roll inflation.
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Tensorial Perturbations. Standard Approach.

■ Consider the fluctuating tensorial modeshi j (~x, t) , where

gi j = a2(t)(δi j +hi j ) anda(t) is the expansion factor in the background

metric ds2 = −dt2 +a2(t)d~x2 .
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■ The perturbation fieldhi j can be decomposed into two polarization states

both obeying the wave equation

ḧ+3Hḣ−a−2∇2h = 0

■ In slow roll inflation (ε ≡−Ḣ/H2 ≪ 1) the form of the modes is

h~k(~x, t) =
√

− 16πGτπ
4(2π)3a2 ei~k~xH(1)

3/2+ε(−kτ)
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■ Consider the fluctuating tensorial modeshi j (~x, t) , where

gi j = a2(t)(δi j +hi j ) anda(t) is the expansion factor in the background

metric ds2 = −dt2 +a2(t)d~x2 .

■ The perturbation fieldhi j can be decomposed into two polarization states

both obeying the wave equation

ḧ+3Hḣ−a−2∇2h = 0

■ In slow roll inflation (ε ≡−Ḣ/H2 ≪ 1) the form of the modes is

h~k(~x, t) =
√

− 16πGτπ
4(2π)3a2 ei~k~xH(1)

3/2+ε(−kτ)

■ In pure de Sitter (ε = 0) the modes take the simple form

h~k(~x, t) =
√

G
π2k3 (H − ike−Ht)ei~k~xeikH−1e−Ht
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Amplitude of Tensorial Perturbations
■ At early times, the amplitude of oscillations depends onk/a(t) in a way

similar to that of a massless field in Minkowski space.
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■ At early times, the amplitude of oscillations depends onk/a(t) in a way

similar to that of a massless field in Minkowski space.

■ As time evolves, the physical wavelength reaches the Hubbleradius when

t = tk ⇒ k/a(tk) = H(tk)
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■ As time evolves, the physical wavelength reaches the Hubbleradius when
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■ A few Hubble times after horizon exit (−kτ ≈ 1) the amplitude freezes to

the constant value|hk|2 =
GH(tk)2
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■ At early times, the amplitude of oscillations depends onk/a(t) in a way

similar to that of a massless field in Minkowski space.

■ As time evolves, the physical wavelength reaches the Hubbleradius when

t = tk ⇒ k/a(tk) = H(tk)

■ A few Hubble times after horizon exit (−kτ ≈ 1) the amplitude freezes to

the constant value|hk|2 =
GH(tk)2

π2k3

■ The freezing amplitude is usually codified through the quantity ∆2
h(k, t) ,

defined in general by∆2
h = 4πk3|h~k|

2 and evaluated at the horizon

crossing timetk (or a few Hubble times after it).
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Amplitude of Tensorial Perturbations
■ At early times, the amplitude of oscillations depends onk/a(t) in a way

similar to that of a massless field in Minkowski space.

■ As time evolves, the physical wavelength reaches the Hubbleradius when

t = tk ⇒ k/a(tk) = H(tk)

■ A few Hubble times after horizon exit (−kτ ≈ 1) the amplitude freezes to

the constant value|hk|2 =
GH(tk)2

π2k3

■ The freezing amplitude is usually codified through the quantity ∆2
h(k, t) ,

defined in general by∆2
h = 4πk3|h~k|

2 and evaluated at the horizon

crossing timetk (or a few Hubble times after it).

■ One finally obtains a nearly “scale free”tensorial power spectrum

Pt(k) ≡ 4∆2
h = 8

M2
P

(

H(tk)
2π

)2

whereMP = 1/
√

8πG is the reduced Planck mass.
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Need for renormalization: variance of h(~x, t).
■ In position space, thevariance of the tensorial perturbationsis defined as

〈h2〉 =
∫

d3~k|h~k(~x, t)|
2 =

∫ ∞
0

dk
k ∆2

h(k)
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Need for renormalization: variance of h(~x, t).
■ In position space, thevariance of the tensorial perturbationsis defined as

〈h2〉 =
∫

d3~k|h~k(~x, t)|
2 =

∫ ∞
0

dk
k ∆2

h(k)

■ Due to the largek behavior of the modesthe above integral is divergent:

〈h2(~x, t)〉 =
∫ ∞

0
dk
k

16πGk3

4π2a3

[

a
k [1+

(2+3ε)
2k2τ2 ]+ ...

]

◆ First term:quadratic divergence(typical in Minkowski).
◆ Second term:logarithmic divergence(typical in expanding universe).
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■ Due to the largek behavior of the modesthe above integral is divergent:
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∫ ∞

0
dk
k

16πGk3

4π2a3

[

a
k [1+

(2+3ε)
2k2τ2 ]+ ...

]

◆ First term:quadratic divergence(typical in Minkowski).
◆ Second term:logarithmic divergence(typical in expanding universe).

■ Little attention has been paid to thesedivergences:
◆ Sometimes this is bypassed by regardingh(~x, t) as aclassical

random fieldand introducing a window function to remove the Fourier

modes with largek. But QFT is much more thanQuantum Mechanics.
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∫
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2 =

∫ ∞
0
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k ∆2

h(k)

■ Due to the largek behavior of the modesthe above integral is divergent:

〈h2(~x, t)〉 =
∫ ∞

0
dk
k

16πGk3

4π2a3

[

a
k [1+

(2+3ε)
2k2τ2 ]+ ...

]

◆ First term:quadratic divergence(typical in Minkowski).
◆ Second term:logarithmic divergence(typical in expanding universe).

■ Little attention has been paid to thesedivergences:
◆ Sometimes this is bypassed by regardingh(~x, t) as aclassical

random fieldand introducing a window function to remove the Fourier

modes with largek. But QFT is much more thanQuantum Mechanics.

◆ It is also common to consider〈h(x1)h(x2)〉 as the basic object.

However, in FRW 〈h(x1)h(x2)〉 =
∫ ∞

0
dk
k ∆2

h(k)
sink|~x−~x′|

k|~x−~x′| , so all the

nontrivial information is contained in〈h2〉 , which is ill defined.
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Renormalization in momentum space

■ We regard the variance〈h2〉 as the basic physical object, which defines

the amplitude of fluctuations in position space.
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Renormalization in momentum space

■ We regard the variance〈h2〉 as the basic physical object, which defines

the amplitude of fluctuations in position space.

■ We treat h(~x, t) as a quantum entity

⇒ RENORMALIZATION IN AN

EXPANDING UNIVERSE
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Renormalization in momentum space

■ We regard the variance〈h2〉 as the basic physical object, which defines

the amplitude of fluctuations in position space.

■ We treat h(~x, t) as a quantum entity

⇒ RENORMALIZATION IN AN

EXPANDING UNIVERSE

■ Since the physically relevant quantity (power spectrum) isexpressed in

momentum space, the natural renormalization scheme to apply is the

so-calledADIABATIC SUBTRACTION (Parker-Fulling, ’74).

The DeWitt-Schwinger method gives the same results.
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Renormalization in momentum space

■ We regard the variance〈h2〉 as the basic physical object, which defines

the amplitude of fluctuations in position space.

■ We treat h(~x, t) as a quantum entity

⇒ RENORMALIZATION IN AN

EXPANDING UNIVERSE

■ Since the physically relevant quantity (power spectrum) isexpressed in

momentum space, the natural renormalization scheme to apply is the

so-calledADIABATIC SUBTRACTION (Parker-Fulling, ’74).

The DeWitt-Schwinger method gives the same results.

■ Adiabatic renormalization removes the divergencesby subtracting (second

order) counterterms mode by mode in the integral

〈h2〉ren =
∫ ∞

0
dk
k

[

∆2
h(k)− 16πGk3

4π2a3

(

1
wk

+ 1
2w3

k

{

ȧ2

a2 + ä
a

})]
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Renormalization of Tensorial Perturbations

■ Calculations give

〈h2〉ren =
∫ ∞

0
dk
k

16πGk3(−τπ)
4π22a2

[

|H(1)
ν (−kτ)|2− 2

π(−kτ)

(

1+
(2+3ε)
2k2τ2

)]
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4π22a2

[

|H(1)
ν (−kτ)|2− 2

π(−kτ)

(

1+
(2+3ε)
2k2τ2

)]

■ Therefore, the renormalized expression for∆2
h(k) is

∆̃2
h(k) =

16πGk3(−τπ)
4π22a2

[

|H(1)
ν (−kτ)|2− 2

π(−kτ)

(

1+
(2+3ε)
2k2τ2
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Renormalization of Tensorial Perturbations

■ Calculations give

〈h2〉ren =
∫ ∞

0
dk
k

16πGk3(−τπ)
4π22a2

[

|H(1)
ν (−kτ)|2− 2

π(−kτ)

(

1+
(2+3ε)
2k2τ2

)]

■ Therefore, the renormalized expression for∆2
h(k) is

∆̃2
h(k) =

16πGk3(−τπ)
4π22a2

[

|H(1)
ν (−kτ)|2− 2

π(−kτ)

(

1+
(2+3ε)
2k2τ2

)]

■ Evaluated at the Hubble radius crossing time we get

Pt(k)ren = 8α
M2

P

(

H(tk)
2π

)2
ε(tk)

whereα ≈ 0.904 andε ≡−Ḣ/H2 ≪ 1.
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Renormalization of Tensorial Perturbations

■ Calculations give

〈h2〉ren =
∫ ∞

0
dk
k

16πGk3(−τπ)
4π22a2

[

|H(1)
ν (−kτ)|2− 2

π(−kτ)

(

1+
(2+3ε)
2k2τ2

)]

■ Therefore, the renormalized expression for∆2
h(k) is

∆̃2
h(k) =

16πGk3(−τπ)
4π22a2

[

|H(1)
ν (−kτ)|2− 2

π(−kτ)

(

1+
(2+3ε)
2k2τ2

)]

■ Evaluated at the Hubble radius crossing time we get

Pt(k)ren = 8α
M2

P

(

H(tk)
2π

)2
ε(tk)

whereα ≈ 0.904 andε ≡−Ḣ/H2 ≪ 1.

■ Recall that theunrenormalizedvalue is

Pt(k) = 8
M2

P

(

H(tk)
2π

)2
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Renormalization of Scalar Perturbations

■ Scalar perturbationsare commonly studied through thegauge-invariant

quantity R (the comoving curvature perturbation) obeying

d2
R k

dτ2 + 2
z

dz
dτ

dR k
dτ +k2

Rk = 0

wherez≡ aφ̇0/H, and withR k related to the inflaton field fluctuations via

R k = −Ψk− H
φ̇0

δφk..
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Renormalization of Scalar Perturbations

■ Scalar perturbationsare commonly studied through thegauge-invariant

quantity R (the comoving curvature perturbation) obeying

d2
R k

dτ2 + 2
z

dz
dτ

dR k
dτ +k2

Rk = 0

wherez≡ aφ̇0/H, and withR k related to the inflaton field fluctuations via

R k = −Ψk− H
φ̇0

δφk..

■ Proceeding as before (with care to treat the adiabatic counterterms for the

Rk field) we get

〈R 2〉ren =
∫ ∞

0
dk
k 4πk3 −πτ

4(2π)3z2

[

|H(1)
µ (−τk)|2− 2

π(−kτ)

(

1+
(2+3(3ε−η))

2(−kτ)2

)]

whereµ= 3/2+3ε−η andη = M2
P(V ′′/V).
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R k = −Ψk− H
φ̇0

δφk..

■ Proceeding as before (with care to treat the adiabatic counterterms for the

Rk field) we get

〈R 2〉ren =
∫ ∞

0
dk
k 4πk3 −πτ

4(2π)3z2

[

|H(1)
µ (−τk)|2− 2

π(−kτ)

(

1+
(2+3(3ε−η))

2(−kτ)2

)]

whereµ= 3/2+3ε−η andη = M2
P(V ′′/V).

■ The renormalized expression for∆2
R

(k) is

∆̃2
R

(k) =
4πk3(−πτ)
4(2π)3z2

[

|H(1)
µ (−τk)|2− 2

π(−kτ)

(

1+
(2+3(3ε−η))

2(−kτ)2
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Time Dependence
■ The renormalized amplitudes of the power spectra∆̃2

h(k) and ∆̃2
R

(k)

inherit the time-dependence of the counterterms.
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Time Dependence
■ The renormalized amplitudes of the power spectra∆̃2

h(k) and ∆̃2
R

(k)

inherit the time-dependence of the counterterms.

■ Since primordial fluctuations acquire classical properties soon after

crossing the Hubble radius, we find it natural to evaluate therenormalized

spectra attk, or a fewe-folds afterwards.
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Time Dependence
■ The renormalized amplitudes of the power spectra∆̃2

h(k) and ∆̃2
R

(k)

inherit the time-dependence of the counterterms.

■ Since primordial fluctuations acquire classical properties soon after

crossing the Hubble radius, we find it natural to evaluate therenormalized

spectra attk, or a fewe-folds afterwards.

■ Assumingn > 1 butnε ≪ 1, we find that (n = number ofe−folds)

◆ ∆̃2
h(k,n) ≈ 2

M2
P

(

H(tk)
2π

)2
ε(tk)(2n−3/2)

◆ ∆̃2
R

(k,n) ≈ 1
2M2

Pε(tk)

(

H(tk)
2π

)2
(3ε(tk)−η(tk))(2n−3/2)

The result is: r = 16ε(tk)
ε(tk)

3ε(tk)−η(tk)
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■ The renormalized amplitudes of the power spectra∆̃2
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■ Since primordial fluctuations acquire classical properties soon after

crossing the Hubble radius, we find it natural to evaluate therenormalized

spectra attk, or a fewe-folds afterwards.

■ Assumingn > 1 butnε ≪ 1, we find that (n = number ofe−folds)
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)2
(3ε(tk)−η(tk))(2n−3/2)

The result is: r = 16ε(tk)
ε(tk)

3ε(tk)−η(tk)

■ The standard resultr = 16ε(tk) is recovered only if the counterterms are

evaluated at timeswell after the end of inflation(n > 100).
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Time Dependence
■ The renormalized amplitudes of the power spectra∆̃2

h(k) and ∆̃2
R

(k)

inherit the time-dependence of the counterterms.

■ Since primordial fluctuations acquire classical properties soon after

crossing the Hubble radius, we find it natural to evaluate therenormalized

spectra attk, or a fewe-folds afterwards.

■ Assumingn > 1 butnε ≪ 1, we find that (n = number ofe−folds)

◆ ∆̃2
h(k,n) ≈ 2

M2
P

(

H(tk)
2π

)2
ε(tk)(2n−3/2)

◆ ∆̃2
R

(k,n) ≈ 1
2M2

Pε(tk)

(

H(tk)
2π

)2
(3ε(tk)−η(tk))(2n−3/2)

The result is: r = 16ε(tk)
ε(tk)

3ε(tk)−η(tk)

■ The standard resultr = 16ε(tk) is recovered only if the counterterms are

evaluated at timeswell after the end of inflation(n > 100).

■ Though a better understanding of the decoherence processesis necessary

to fully determine the time scale at which thequantum-to-classical

transitionreally occurs, our predictions are accurate up ton∼ 10−20).
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Testable Effects

■ Renormalization also affects thespectral indices:

Standard Values
◆ nt = −2ε

◆ ns−1 = 2(η−3ε)

◆ n′t = −nt(1−ns+nt)

Renormalized Values
◆ nt = 2(ε−η)

◆ ns−1 = 2(η−3ε)+
(12ε2−8εη+ξ)

3ε−η

◆ n′t = 8ε(ε−η)+2ξ , whereξ ≡ M4
P(V′V′′′/V2).
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Renormalized Values
◆ nt = 2(ε−η)

◆ ns−1 = 2(η−3ε)+
(12ε2−8εη+ξ)

3ε−η

◆ n′t = 8ε(ε−η)+2ξ , whereξ ≡ M4
P(V′V′′′/V2).

■ We find anew consistency relationfor single field inflation

r = 4(1−ns−nt)+
4n′t

n2
t −2n′t

(

1−ns−
√

2n′t +(1−ns)2−n2
t

)
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■ We find anew consistency relationfor single field inflation

r = 4(1−ns−nt)+
4n′t

n2
t −2n′t

(

1−ns−
√

2n′t +(1−ns)2−n2
t

)

■ The standard predictionr = −8nt requires nt < 0 .

Our prediction also allows fornt ≥ 0 .
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Our prediction also allows fornt ≥ 0 .

■ The standard prediction constrainsn′t = −nt(1−ns+nt) .

In our casen′t is a new observable !!!
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Testable Effects

■ Renormalization also affects thespectral indices:

Standard Values
◆ nt = −2ε

◆ ns−1 = 2(η−3ε)

◆ n′t = −nt(1−ns+nt)

Renormalized Values
◆ nt = 2(ε−η)

◆ ns−1 = 2(η−3ε)+
(12ε2−8εη+ξ)

3ε−η

◆ n′t = 8ε(ε−η)+2ξ , whereξ ≡ M4
P(V′V′′′/V2).

■ We find anew consistency relationfor single field inflation

r = 4(1−ns−nt)+
4n′t

n2
t −2n′t

(

1−ns−
√

2n′t +(1−ns)2−n2
t

)

■ The standard predictionr = −8nt requires nt < 0 .

Our prediction also allows fornt ≥ 0 .

■ The standard prediction constrainsn′t = −nt(1−ns+nt) .

In our casen′t is a new observable !!!

■ For more details and references seePhys.Rev. D81,043514(2010).
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Conclusions

■ The predictions of (single-field) slow-roll inflation changesignificantlyif

renormalization in curved spacetimes is taken into accountand the

counterterms are evaluated around the time of Hubble horizon exit.
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Conclusions

■ The predictions of (single-field) slow-roll inflation changesignificantlyif

renormalization in curved spacetimes is taken into accountand the

counterterms are evaluated around the time of Hubble horizon exit.

■ Renormalization provides a new consistency conditionthat relates the

tensor-to-scalar amplitude ratio with the spectral indices.

r = 16ε ε
3ε−η

nt = 2(ε−η)

ns−1 = 2(η−3ε)+
(12ε2−8εη+ξ)

3ε−η

n′t = 8ε(ε−η)+2ξ
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Conclusions

■ The predictions of (single-field) slow-roll inflation changesignificantlyif

renormalization in curved spacetimes is taken into accountand the

counterterms are evaluated around the time of Hubble horizon exit.

■ Renormalization provides a new consistency conditionthat relates the

tensor-to-scalar amplitude ratio with the spectral indices.

r = 16ε ε
3ε−η

nt = 2(ε−η)

ns−1 = 2(η−3ε)+
(12ε2−8εη+ξ)

3ε−η

n′t = 8ε(ε−η)+2ξ

■ Only when the counterterms are evaluated at timeswell beyond the end of

inflationdoes one recover the standard predictions. A deeper

understanding of thequantum-to-classicaltransition is necessary.
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Conclusions

■ The predictions of (single-field) slow-roll inflation changesignificantlyif

renormalization in curved spacetimes is taken into accountand the

counterterms are evaluated around the time of Hubble horizon exit.

■ Renormalization provides a new consistency conditionthat relates the

tensor-to-scalar amplitude ratio with the spectral indices.

r = 16ε ε
3ε−η

nt = 2(ε−η)

ns−1 = 2(η−3ε)+
(12ε2−8εη+ξ)

3ε−η

n′t = 8ε(ε−η)+2ξ

■ Only when the counterterms are evaluated at timeswell beyond the end of

inflationdoes one recover the standard predictions. A deeper

understanding of thequantum-to-classicaltransition is necessary.

■ The new generation of high precision detectors may soonturn QFT in

curved spacetimes into an experimental science. Our results indicate that

renormalization may play an important role in the interpretation of the

observational data.
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Thanks !!!
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