IEM INSTITUTO DE ESTRUCTURA

DE LA MATERIA ﬁﬁ% onme e
DEESPANA  DECIENCIA
CONSEJO SUPERIOR EINNOVACION

CSIC DE INVESTIGACIONES CIENTIFICAS

Can Renormalization Change the Observable
Predictions of Inflation?

Gonzalo J. Olmo

Instituto de Estructura de la Materia - CSIC (Spain)

In collaboration with I.Agullo, J.Navarro-Salas, and L.Parker

Gonzalo J. Olmo



Motivation and Summary

= |nflation provides a natural solution to therizon and flatness problems
of the hot Big Bang cosmology.

e Motivation and Summary

e Tensor Modes
e Amplitude of TM
e Need for renormalization

e Renormalization Method
e Tensor Perturbations

e Scalar Perturbations

e Time Dependence

e Testable Effects

e Conclusions

The End

Gonzalo J. Olmo Porto, 29-31 March, IberiCos 2010 - p. 2/13




Motivation and Summary

= |nflation provides a natural solution to therizon and flatness problems
of the hot Big Bang cosmology.

s jomarhiaces = |nflation also provides @uantum Mechanical mechanigmaccount for

e Amplitude of TM
e Need for renormalization

theorigin of small inhomogeneities the early Universe, which represent
the seeds for structure formation.

e Renormalization Method
e Tensor Perturbations

e Scalar Perturbations

e Time Dependence

e Testable Effects

e Conclusions

The End

Gonzalo J. Olmo Porto, 29-31 March, IberiCos 2010 - p. 2/13




Motivation and Summary

= |nflation provides a natural solution to therizon and flatness problems
of the hot Big Bang cosmology.

s jomarhiaces = |nflation also provides @uantum Mechanical mechanigmaccount for

e Amplitude of TM
e Need for renormalization

theorigin of small inhomogeneities the early Universe, which represent
the seeds for structure formation.

e Renormalization Method
e Tensor Perturbations

e Scalar Perturbations

e Time Dependence

« Testable Effects = A relic background of gravitational wavesalso unavoidable if inflation
e Conclusions . .
happened in the early Universe.

The End

Gonzalo J. Olmo Porto, 29-31 March, IberiCos 2010 - p. 2/13




Motivation and Summary

= |nflation provides a natural solution to therizon and flatness problems
of the hot Big Bang cosmology.

et = Inflation also provides &uantum Mechanical mechanigmaccount for
B the origin of small inhomogeneitieis the early Universe, which represent
RN the seeds for structure formation.

e e = A relic background of gravitational wavésalso unavoidable if inflation

e Conclusions

happened in the early Universe.

The End

= Typically, an inflationary model predicts the value of 3 paeders:

ns—1
O Scalar spectral inde ns = Ps(k) = Ps(ko) (k%)

[ Tensor spectral inde ny = Pt(k) - Pt(kO) <%)nt

0 Tensor-to-scalarratir = r= B

Gonzalo J. Olmo Porto, 29-31 March, IberiCos 2010 - p. 2/13




Motivation and Summary

= |nflation provides a natural solution to therizon and flatness problems
of the hot Big Bang cosmology.

et = Inflation also provides &uantum Mechanical mechanigmaccount for
B the origin of small inhomogeneitieis the early Universe, which represent
RN the seeds for structure formation.

e e = A relic background of gravitational wavésalso unavoidable if inflation

e Conclusions

happened in the early Universe.

The End

= Typically, an inflationary model predicts the value of 3 paeders:

ns—1
O Scalar spectral inde ns = Ps(k) = Ps(ko) (k%)

[ Tensor spectral inde ny = Pt(k) - Pt(kO) <%)nt

0 Tensor-to-scalarratir = r= B

= These parameters are not independent

Gonzalo J. Olmo Porto, 29-31 March, IberiCos 2010 - p. 2/13




Motivation and Summary

= |nflation provides a natural solution to therizon and flatness problems
of the hot Big Bang cosmology.

et = Inflation also provides &uantum Mechanical mechanigmaccount for
B the origin of small inhomogeneitieis the early Universe, which represent
RN the seeds for structure formation.

e e = A relic background of gravitational wavésalso unavoidable if inflation

e Conclusions

happened in the early Universe.

The End

= Typically, an inflationary model predicts the value of 3 paeders:
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0 Scalar spectral inde ns = Ps(k) = Ps(ko) (k%)
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O Tensor spectral inde gy = R(k) = R (ko) <E>
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We shall argue tha@Quantum Field Renormalizatiosignifi-

cantly influences the predictions of primordial perturbasio
and hence the expected measurable imprint of inflation on the
CMB. In particular, we will find anew consistency condition

A1 e 4n; . / )2 — 2
r=4(1—ng nt)+nt2_2n{ (1 Ns \/Znt+(1 Ng) nt)

= | will try to justify why renormalization is neededand how it affects
the predictions of single field slow roll inflation.
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= In slow roll inflation € = —H /H? < 1) the form of the modes is

)
\/ - 41(62T1[TG3Ta1£ elsz:(%/sza

(—k1)

= |n pure de Sitterd = 0) the modes take the simple form

e (X,t) = 1/ S5 (H — ke Ht)giRgkH e ™
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Amplitude of Tensorial Perturbations

At early times, the amplitude of oscillations dependspa(t) in a way
similar to that of a massless field in Minkowski space.

As time evolves, the physical wavelength reaches the Huialdieis when
t=t = k/a(t) =H(%)

A few Hubble times after horizon exit(kt ~ 1) the amplitude freezes to

GH(tk)Z

the constant valu [hy|? = =5

The freezing amplitude is usually codified through the qunal Aﬁ(k,t) :

defined in general b Af = 41ic|h|* and evaluated at the horizon
crossing timey (or a few Hubble times after it).
One finally obtains a nearly “scale freensorial power spectrum

2
Rl =487 = & (4

whereMp = 1/v/81G is the reduced Planck mass
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= Little attention has been paid to theseergences
0 Sometimes this is bypassed by regarc h(X;t) as aclassical
random fieldand introducing a window function to remove the Fourier
modes with largd. But QFT is much more tha®uantum Mechanics

0 Itis also common to conside (h(x1)h(x2)) as the basic object.
However, in FRW (h(x1)h(x2)) = [&° %Aﬁ(k)% ,so all the

nontrivial information is contained i (h?) , which is ill defined.
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= Adiabatic renormalization removes the divergenogsubtracting (second
order) counterterms mode by mode in the integral

(h?)ren =[5 9K [Az(k) - 14?,1:%53 (wk 0 ZV\/3 {az ™ é})}
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41122a2
The End

= Evaluated at the Hubble radius crossing time we get
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H(t
I:)t(k)ren — IE\S/I_% ( 2(&()) S(tk)
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= Evaluated at the Hubble radius crossing time we get
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Renormalization of Scalar Perturbations

= Scalar perturbationgre commonly studied through tgauge-invariant
guantity ® (the comoving curvature perturbation) obeying

d°®x |, 2dzdRk | 1 2., _
a2 T 2dr v TKR=0
wherez = ag/H, and with®, related to the inflaton field fluctuations via

Rk = —Wk — —%6@..
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wherep = 3/2+3¢—n andn = M3(V" /V).
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= Only when the counterterms are evaluated at timel$ beyond the end of
inflation does one recover the standard predictions. A deeper
understanding of thguantum-to-classicalransition is necessary.

= The new generation of high precision detectors may $0omQFT in
curved spacetimes into an experimental scieQ# results indicate that
renormalization may play an important role in the interatien of the
observational data
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