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� The CMB anisotropies 

� The Recombination Epoch
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equation of state parameter w and the gravitational constant 
G

� Conclusions ☺



CMB theoretical predictions are in good agreement with the experimental data (in 
particular with the temperature angular power spectrum). 
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Physical Processes to Induce CMB FluctuationsPhysical Processes to Induce CMB Fluctuations

The primary anisotropies of CMB are induced by three principal mechanisms:

• Gravity ( Sachs-Wolfe effect, regions with high density produce big gravitational 
redshift)

• Adiabatic density perturbations (regions with more photons are hotter)

• Doppler Effect (peculiar velocity of electrons on last scattering surface)
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Gravity Adiabatic Doppler

The anisotropies in temperature are modulated by the visibility functionvisibility functionvisibility functionvisibility function which is defined as 
the probability density that a photon is last scattered at redshift z:



Visibility function and fine structure constant
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We can see that the visibility function is 
peaked at the Epoch of Recombination. 
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Variation of free electron fraction

If we plot  the free electron 
fraction versus the redshift, 
we can notice a different 
epoch of Recombination 
for different values of for different values of 
alpha. In particular if the 
fine structure constant    is 
smaller than the present 
value, then the 
Recombination takes place 
at smaller z.

α

(see e.g. Avelino et al., Phys.Rev.D64:103505,2001) 



Modifications caused by variations of the Modifications caused by variations of the 
fine structure constant fine structure constant 

If the fine structure constant is  
recombination is 

delayed, the size of the horizon 
at recombination is larger and as 
a consequence the peaks of the 

1/ 0 <αα

a consequence the peaks of the 
CMB angular spectrum are 
shifted at lower l (larger angular 
scales). 
Therefore, we can constrain 
variations in the fine structure 
constant at recombination by 
measuring CMB anisotropies !



A “cosmic” degeneracy is cleary 
visible in CMB power spectrum in 
temperature and polarization 
between the fine structure constant 
and the Hubble constant.
The angle that subtends the horizon 
at recombination is indeed given by:

Caveat: is not possible to place strong constraints 
on the fine structure constant by using cmb data alone !
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The horizon size increases by 
decreasing the fine structure 
constant but we can compensate 
this by lowering the Hubble 
parameter and increasing the 
angular distance.



We sample the following set of  
cosmological parameters from 
WMAP-5 years observations:

Baryonic density
Cold dark matter density 

We use a method based on 
Monte Carlo Markov Chain 
( the algorithm of Metropolis-
Hastings).
The results are given in the form 

New constraints on the variation of 
the fine structure costant 

2hbΩ
2hcΩ

Menegoni, Galli, Bartlett, Martins, Melchiorri, arXiv:0909.3584v1 
Physical Review D 80 08/302 (2009)

Cold dark matter density 
Hubble parameter
Scalar spectrum index
Optical depth
Overall normalization of the 
spectrum
Variations on the fine structure 
constant                                                                                                                     

We also permit variations of the 
parameter of state w and on the 
gravitational constant G.  

The results are given in the form 
of likelihood probability 
functions.

We are looking for possible 
degeneracies between the 
parameters.
We assume a flat universe.
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Constraints from WMAPConstraints from WMAP--5 5 
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! External prior on the Hubble parameter:



In this figure we show the 68% and 
95% c.l. constraints on the          vs 
Hubble constant for different 
datasets . 

0/αα

Constraints on the fine structure Constraints on the fine structure 
constantconstant

0/αα

Menegoni, Galli, Bartlett, Martins, Melchiorri, arXiv:0909.3584v1 
Physical Review D 80 08/302 (2009)



What about dark energy ?What about dark energy ?



The degeneracy between the fine structure constant The degeneracy between the fine structure constant 
with the dark energy equation of state wwith the dark energy equation of state w
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If we vary the value of w we change the angular 
distance at the Recombination. Again this is 
degenerate with changing the sound horizon at 
recombination varying the fine structure 
constant. 
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Constraints on the dark energy Constraints on the dark energy 
parameterparameter

Constraints on the dark energy equation of state in presence of a varying fine structure constant.
Menegoni, et al .(In press), 2010



What about other constants ?What about other constants ?



λ→

We can describe variatons in the 
gravitational constant by a 
dimensionless parameter        :                                                                                         

The expasion rate H now satisfies at 
the relation:

λ
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We can We can introduce a possible variations of the Newton introduce a possible variations of the Newton 
gravitational  constant G gravitational  constant G 

GG 2λ→
We can modify the Friedmann 
equation, and so we find:                                                       
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Galli, et al.PhysRevD.80.023508 



1000

2000

3000

4000

5000

6000

7000

0,01

0,1

1

10

 λ
G

min
(=0.80808) e α/α

0
=0.95812

 λ
G

max
(=1.28314) e α/α

0
=1.00915

 

 

C
lT
T
 l
(l
+
1
)

 

 

C
lE
E
l(
l+
1
)

1E-3

0,01

0 500 1000 1500 2000

-160
-140
-120
-100
-80
-60
-40
-20
0
20
40
60
80
100
120
140
160

l

 

 

C
lT
E
l(
l+
1
)



There is a degeneracy between the There is a degeneracy between the 
fine structure constant and fine structure constant and 

gravitational constantgravitational constant
C.J.A.P. Martins, Menegoni,Galli,Mangano, Melchiorri arXiv:1001.3418v3
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If we assume that the fine structure 
constant and G don’t vary from 
BBN to recombination we can 
combine the CMB results with BBN 
analysis. Differently than for CMB, 
in case of BBN, variations of the fine 

If we include the BBN data the degeneracy If we include the BBN data the degeneracy 
between G and the fine structure constant can between G and the fine structure constant can 

be brokenbe broken

in case of BBN, variations of the fine 
structure constant and G are 
negatively correlated, since both        
and Deuterium are increasing 
functions of both parameters: this 
implies that the likelihood 
countours for BBN and CMB are 
almost orthogonal in that plane, 
thus leading to a tighter bound, in 
particular on        .

Gλ



Conclusions:Conclusions:Conclusions:Conclusions:

� We found a substantial agreement with the present value of 
the fine structure constant  (we constrain variations at max of  
2,5%  at 68% level of confidence from WMAP-5 years and 
less than 0.7% when combined with HST observations).

� When we introduce also variations on G, we found that the 
current data  gives no clear indication about the relative sign 
of the variations, but already prefers that any relative 

E’ finita!!

current data  gives no clear indication about the relative sign 
of the variations, but already prefers that any relative 
variations in the fine structure constant should be of the 
same sign of G for 1% variations. We found much tighter 
constraints by adding BBN data.

� When we consider an equation of state parameter w, again we 
notice a degeneracy that can alters the current constraints on 
w significantly (by 10%).



The temperature and the redshift in which The temperature and the redshift in which 
Recombination takes place doesn’t vary after a Recombination takes place doesn’t vary after a 
variation of the gravitational constant’s value. variation of the gravitational constant’s value. 

The free electron fraction 
depends on the value of      

In fact the faster the universe 
Gλ

Zahn, Zaldarriaga, Phys.Rev, D67 
(2003) 063002

In fact the faster the universe 
is expanding at a given 

redshift (i.e the larger      ), 

the more difficult it’s for 
hydrogen to recombine and 
hence the larger is the free 

electron fraction: so the free 
electron fraction at a given 

redshift after start of 
recombination increases. 

Gλ



Constraints on the Newton gravitational Constraints on the Newton gravitational 
constant and the fine structure constantconstant and the fine structure constant



Likelihood fucntion and marginalization 
method

To analyse the CMB anisotropies we use 
the likelihood function which is  definied 
as the probability that an experiment’ll 
give the  number of the theoretical 
model ( ). We use the Bayes’s theorem:

conditional probability

If we have  a N-dimensions 
likelihood function L, we had to 
integrate on the correlated 
distribution function.
This method is called 
marginalization:

θ

conditional probability

prior

Likelihood Function

with

We use a method based on the 
Markov chain MCMC ( the 
algorithm of Metropolis-Hastings).
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1/ 0 <αα

We indeed found that if one allows 
for variations in the fine stucture 
constant, the WMAP five years data 
bounds the age of the Universe to 

(at 68% c.l.) with an increase in the 

Age of the UniverseAge of the Universe

Gyrst 1.19.130 ±=
(at 68% c.l.) with an increase in the 
error of a factor 3 respect to the 
quoted standard constraint. 
68% and 95% c.l. constraints on the    

vs the age of Universe for 
different datasets. The countour 
regions come from the WMAP-5 
data (blue), all current CMB data 
(red), and CMB+HST (green).

0/αα



Recombination: standard Model Recombination: standard Model Recombination: standard Model Recombination: standard Model 

Direct Recombination 

NO net recombination

Decay to 2 photons from 2s 

levels metastable

−↔ e+Hγ+H +

1s Free electrons 

Direct 
Recombination

(13.6 eV)

γ+He+H +

2s↔−

27

Cosmological redshift  of  

Lyman alpha’s photons

γ+HH 1s2p ↔

1s

Decay to 

2-photons
Photons  

Lyman-alpha
(10.21 eV) 

2γ1s2s +HH ↔

γ+He+H +

2p↔−

γ+He+H 2s↔
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