Models of Dark Energy Accretion onto Black Holes

Daniel C. Guariento[†] J. E. Horvath[‡]

[†] Universidade de São Paulo, Instituto de Física [‡] Universidade de São Paulo, Instituto de Astronomia, Geofísica e Ciências Atmosféricas São Paulo, Brazil

Motivation

Introduction
Accretion models with no back reaction
Back Reaction analysis
References

Motivation

Introduction	
Accretion models with no back reaction	
Back Reaction analysis	
References	
	Black hole interaction with dark energy
	[Babichev et al., 2005, Guariento et al., 2008]

Motivation

Introduction	
Accretion models with no back reaction	
Back Reaction analysis	
References	
	Black hole interaction with dark energy
	[Babichev et al., 2005, Guariento et al., 2008]
	Dark energy models and evolution

Introduction	
Accretion models with no back reaction	
Back Reaction analysis	
References	
	Black hole interaction with dark energy
	[Babichev et al., 2005, Guariento et al., 2008]
	Dark energy models and evolution
	\blacksquare Black hole and dark energy thermodynamics (negativity of entropy \times

negativity of temperature \times neither) [Lima et al., 2010]

Introduction Accretion models with no back reaction	
Back Reaction analysis	
References	
	Black hole interaction with dark energy
	[Babichev et al., 2005, Guariento et al., 2008]
	Dark energy models and evolution
	Black hole and dark energy thermodynamics (negativity of entropy × negativity of temperature × neither) [Lima et al., 2010]
	Contribution of black holes to the evolution of the universe

[Khlopov, 2007]

Introduction Accretion models with no back reaction Back Reaction analysis	
References	 Black hole interaction with dark energy [Babichev et al., 2005, Guariento et al., 2008] Dark energy models and evolution Black hole and dark energy thermodynamics (negativity of entropy × negativity of temperature × neither) [Lima et al., 2010] Contribution of black holes to the evolution of the universe [Khlopov, 2007]

Back reaction analysis [Faraoni and Jacques, 2007]

Back Reaction analysis

References

Accretion models with no back reaction

Introduction

Ac	cretion	models	with
no	back r	eaction	

Mass variation from the energy-momentum tensor

Energy-momentum flow accross a

3-surface

Accretion of a test fluid

Model summary

Back Reaction analysis

References

4-momentum in a box of volume V

Introduction

Accretion models with no back reaction

Mass variation from the energy-momentum tensor

Energy-momentum flow accross a

3-surface

Accretion of a test fluid

Model summary

Back Reaction analysis

References

4-momentum in a box of volume V

$$p^{\mu} = \int_{V} T^{\mu\nu} \,\mathrm{d}\Sigma_{\nu}$$

Introduction

Accretion models with no back reaction

Mass variation from the energy-momentum tensor

Energy-momentum flow accross a

3-surface

Accretion of a test fluid

Model summary

Back Reaction analysis

References

4-momentum in a box of volume V

$$p^{\mu} = \int_{V} T^{\mu\nu} \,\mathrm{d}\Sigma_{\nu} = V T^{\mu\nu} u_{\nu}$$

Introduction

Accretion models with no back reaction

Mass variation from the energy-momentum tensor

Energy-momentum flow accross a

3-surface

Accretion of a test fluid

Model summary

Back Reaction analysis

References

4-momentum in a box of volume V

$$p^{\mu} = \int_{V} T^{\mu\nu} \,\mathrm{d}\Sigma_{\nu} = V T^{\mu\nu} u_{\nu}$$

4-momentum transfered from the box surface S during Δau

$$\Delta p^{\mu} = S \Delta \tau T^{\mu\nu} \sigma_{\nu}$$

Introduction

Accretion models with no back reaction

Mass variation from the energy-momentum tensor

Energy-momentum flow accross a 3-surface

Accretion of a test fluid

```
Model summary
```

Back Reaction analysis

References

4-momentum in a box of volume V

$$p^{\mu} = \int_{V} T^{\mu\nu} \,\mathrm{d}\Sigma_{\nu} = V T^{\mu\nu} u_{\nu}$$

4-momentum transfered from the box surface S during Δau

$$\Delta p^{\mu} = S \Delta \tau T^{\mu\nu} \sigma_{\nu}$$

Energy variation through the horizon of a Schwarzschild black hole

$$\frac{\mathrm{d}E_{\mathrm{inside}}}{\mathrm{d}\tau} = \frac{\mathrm{d}m}{\mathrm{d}\tau}$$

Introduction

Accretion models with no back reaction

Mass variation from the energy-momentum tensor

Energy-momentum flow accross a 3-surface

Accretion of a test fluid

Model summary

Back Reaction analysis

References

4-momentum in a box of volume V

$$p^{\mu} = \int_{V} T^{\mu\nu} \,\mathrm{d}\Sigma_{\nu} = V T^{\mu\nu} u_{\nu}$$

4-momentum transfered from the box surface S during Δau

$$\Delta p^{\mu} = S \Delta \tau T^{\mu\nu} \sigma_{\nu}$$

Energy variation through the horizon of a Schwarzschild black hole

$$\frac{\mathrm{d}E_{\mathrm{inside}}}{\mathrm{d}\tau} = \frac{\mathrm{d}m}{\mathrm{d}\tau} = \frac{\mathrm{d}E_{\mathrm{outside}}}{\mathrm{d}\tau} = ST^{\mu\nu}u_{\mu}\sigma_{\nu}$$

Introduction

Accretion models with no back reaction

Mass variation from the energy-momentum tensor

Energy-momentum flow accross a 3-surface

Accretion of a test fluid

Model summary

Back Reaction analysis

References

4-momentum in a box of volume V

$$p^{\mu} = \int_{V} T^{\mu\nu} \,\mathrm{d}\Sigma_{\nu} = V T^{\mu\nu} u_{\nu}$$

4-momentum transfered from the box surface S during Δau

$$\Delta p^{\mu} = S \Delta \tau T^{\mu\nu} \sigma_{\nu}$$

Energy variation through the horizon of a Schwarzschild black hole

$$\frac{\mathrm{d}E_{\mathrm{inside}}}{\mathrm{d}\tau} = \frac{\mathrm{d}m}{\mathrm{d}\tau} = \frac{\mathrm{d}E_{\mathrm{outside}}}{\mathrm{d}\tau} = ST^{\mu\nu}u_{\mu}\sigma_{\nu}$$
$$\left[\frac{\mathrm{d}m}{\mathrm{d}t} = ST_{0}^{-1}\right] \tag{1}$$

Energy-momentum flow accross a 3-surface

Introduction

Accretion models with
Mass variation from the
energy-momentum
tensor
Energy-momentum
flow accross a
3-surface
Accretion of a test fluid
Model summary

Back Reaction analysis

References

Conservation of the energy-momentum tensor

$$T^{\mu\nu}_{\ ;\nu} = 0;$$

Introduction

- Accretion models with no back reaction Mass variation from the energy-momentum tensor Energy-momentum flow accross a 3-surface Accretion of a test fluid Model summary
- Back Reaction analysis
- References

Conservation of the energy-momentum tensor

$$T^{\mu\nu}_{\ ;\nu} = 0; \quad u_{\mu}T^{\mu\nu}_{\ ;\nu} = 0$$
 (2)

Introduction

Accretion models with

- no back reaction
- Mass variation from the energy-momentum tensor
- Energy-momentum flow accross a
- 3-surface
- Accretion of a test fluid
- Model summary
- Back Reaction analysis

References

Conservation of the energy-momentum tensor

$$T^{\mu\nu}_{;\nu} = 0; \quad u_{\mu}T^{\mu\nu}_{;\nu} = 0$$
 (2)

$$\frac{\mathrm{d}m}{\mathrm{d}t} = -\frac{A(m)}{m^2} + m^2 \left[27\pi\rho_{\mathrm{rad}}(T) + 16\pi(1+w)\rho_{\mathrm{DE}}\right]$$

Accretion of dark energy and radiation with Hawking evaporation

Introduction

Accretion models with

- no back reaction
- Mass variation from the energy-momentum tensor
- Energy-momentum flow accross a
- 3-surface
- Accretion of a test fluid
- Model summary

Back Reaction analysis

References

Conservation of the energy-momentum tensor

$$T^{\mu\nu}_{;\nu} = 0; \quad u_{\mu}T^{\mu\nu}_{;\nu} = 0$$
 (2)

Accretion of dark energy and radiation with Hawking evaporation $dm = A(m) = 2 \log (\pi) + 1 \log (1 + m)$

$$\frac{\mathrm{d}m}{\mathrm{d}t} = -\frac{\pi(m)}{m^2} + m^2 \left[27\pi\rho_{\mathrm{rad}}(T) + 16\pi(1+w)\rho_{\mathrm{DE}}\right]$$

Phantom dark energy causes regime transitions

Introduction

Accretion models with

- no back reaction
- Mass variation from the energy-momentum tensor
- Energy-momentum flow accross a
- 3-surface
- Accretion of a test fluid
- Model summary

Back Reaction analysis

References

Conservation of the energy-momentum tensor

$$T^{\mu\nu}_{;\nu} = 0; \quad u_{\mu}T^{\mu\nu}_{;\nu} = 0$$
 (2)

Accretion of dark energy and radiation with Hawking evaporation $\frac{\mathrm{d}m}{\mathrm{d}t} = -\frac{A(m)}{m^2} + m^2 \left[27\pi\rho_{\mathrm{rad}}(T) + 16\pi(1+w)\rho_{\mathrm{DE}}\right]$

Phantom dark energy causes regime transitions

Radiation accretion to phantom accretion

$$t_{\rm ph} = 2/3H_0 \left(\frac{16}{27\rho_{\rm ph}^0}/\rho_{\rm rad}^0\right)^{6-9/2(1+w)}$$

Introduction

Accretion models with no back reaction

- Mass variation from the energy-momentum tensor
- Energy-momentum flow accross a
- 3-surface
- Accretion of a test fluid
- Model summary

Back Reaction analysis

References

Conservation of the energy-momentum tensor

$$T^{\mu\nu}_{;\nu} = 0; \quad u_{\mu}T^{\mu\nu}_{;\nu} = 0$$
 (2)

Accretion of dark energy and radiation with Hawking evaporation $\frac{\mathrm{d}m}{\mathrm{d}t} = -\frac{A(m)}{m^2} + m^2 \left[27\pi\rho_{\mathrm{rad}}(T) + 16\pi(1+w)\rho_{\mathrm{DE}}\right]$

Phantom dark energy causes regime transitions

Radiation accretion to phantom accretion

$$t_{\rm ph} = 2/3H_0 \left(\frac{16}{27\rho_{\rm ph}^0}/\rho_{\rm rad}^0\right)^{6-9/2(1+w)}$$

□ Phantom accretion to Hawking evaporation

$$m_t = \left[\frac{c^3}{G^2} \frac{A(m)}{|1 + \omega| \rho_{\rm ph}}\right]^{1/4}$$

5th ICM – Porto 2010 – 6 / 13

5th ICM - Porto 2010 - 7 / 13

5th ICM - Porto 2010 - 7 / 13

5th ICM - Porto 2010 - 7 / 13

5th ICM - Porto 2010 - 7 / 13

References

Back Reaction analysis

Introduction

Accretion models with no back reaction

Back Reaction analysis

The consistency problem

McVittie: Exact solutions and

behaviors

A wCDM accretion

model

Conclusions and developments

References

$$ds^{2} = (1 - \frac{2m(\nu)}{r}) d\nu^{2} - 2d\nu dr - r^{2} d\Omega^{2}$$

Introduction

Accretion models with no back reaction

Back Reaction analysis

The consistency problem

McVittie: Exact solutions and

behaviors

A wCDM accretion

model

Conclusions and developments

References

Simplest non-vacuum solution: Vaidya metric

$$ds^{2} = (1 - \frac{2m(\nu)}{r}) d\nu^{2} - 2d\nu dr - r^{2} d\Omega^{2}$$

Einstein equations only support null dust (p = 0)

Introduction

Accretion models with no back reaction

Back Reaction analysis

The consistency problem

McVittie: Exact solutions and behaviors A wCDM accretion model

Conclusions and developments

References

$$ds^{2} = (1 - \frac{2m(\nu)}{r}) d\nu^{2} - 2d\nu dr - r^{2} d\Omega^{2}$$

- Einstein equations only support null dust (p = 0)
- Variable Vaidya–de Sitter and Bonnor–Vaidya present similar limitations

Introduction

Accretion models with no back reaction

Back Reaction analysis

The consistency problem

McVittie: Exact solutions and behaviors A wCDM accretion model

Conclusions and developments

References

$$ds^{2} = (1 - \frac{2m(\nu)}{r}) d\nu^{2} - 2d\nu dr - r^{2} d\Omega^{2}$$

- Einstein equations only support null dust (p = 0)
- Variable Vaidya–de Sitter and Bonnor–Vaidya present similar limitations

$$g_{00} = \left(1 - \frac{2m(\nu)}{r} + \lambda(\nu)r^2 + \frac{e(\nu)}{r^2}\right)$$

Introduction

Accretion models with no back reaction

Back Reaction analysis

The consistency problem

McVittie: Exact solutions and behaviors A wCDM accretion model

Conclusions and developments

DCG, JEH

References

$$ds^{2} = (1 - \frac{2m(\nu)}{r}) d\nu^{2} - 2d\nu dr - r^{2} d\Omega^{2}$$

- Einstein equations only support null dust (p = 0)
- Variable Vaidya–de Sitter and Bonnor–Vaidya present similar limitations

$$g_{00} = \left(1 - \frac{2m(\nu)}{r} + \lambda(\nu)r^2 + \frac{\mathrm{SdS}}{r}\right)$$

Introduction

Accretion models with no back reaction

Back Reaction analysis

The consistency problem

McVittie: Exact solutions and behaviors A wCDM accretion model

Conclusions and developments

References

$$ds^{2} = (1 - \frac{2m(\nu)}{r}) d\nu^{2} - 2d\nu dr - r^{2} d\Omega^{2}$$

- Einstein equations only support null dust (p = 0)
- Variable Vaidya–de Sitter and Bonnor–Vaidya present similar limitations

$$g_{00} = \left(1 - \frac{2m(\nu)}{r} + \lambda(\nu)r^2 + \frac{e(\nu)}{r^2}\right)^{\text{null dust}}$$

Introduction

Accretion models with no back reaction

Back Reaction analysis

The consistency problem

McVittie: Exact solutions and behaviors A wCDM accretion model Conclusions and

developments

References

Simplest non-vacuum solution: Vaidya metric

(

$$ds^{2} = (1 - \frac{2m(\nu)}{r}) d\nu^{2} - 2d\nu dr - r^{2} d\Omega^{2}$$

- Einstein equations only support null dust (p = 0)
- Variable Vaidya–de Sitter and Bonnor–Vaidya present similar limitations

$$g_{00} = \left(1 - \frac{2m(\nu)}{r} + \lambda(\nu)r^2 + \frac{e(\nu)}{r^2}\right)$$

Cosmological black holes: generalized McVittie solution [Faraoni and Jacques, 2007]

$$ds^{2} = \frac{\left(1 - \frac{m(t)}{2a(t)r}\right)^{2}}{\left(1 + \frac{m(t)}{2a(t)r}\right)^{2}}dt^{2} - a^{2}(t)\left(1 + \frac{m(t)}{2a(t)r}\right)^{4}\left(dr^{2} + r^{2}d\Omega^{2}\right)$$

5th ICM – Porto 2010 – 9 / 13

Introduction

Accretion models with no back reaction

Back Reaction analysis

Proposed fluids

The consistency problem

McVittie: Exact solutions and behaviors

A wCDM accretion model

Conclusions and developments

References

l	n	tr	0	d	u	С	ti	0	r)		
-	_	_	_	_	_	_	_	_	_	_	_	_

Ac	cretio	n	models	with
no	back	re	eaction	

· · · · · · · · · · · · · · · · · · ·

The consistency problem

McVittie: Exact solutions and behaviors

A wCDM accretion

model

Conclusions and developments

References

Proposed fluids

□ Single perfect fluid

$$p=-\rho$$
 Schwarzschild–de Sitter

Introduction

- Accretion models with no back reaction
- Back Reaction analysis

The consistency problem

McVittie: Exact solutions and

behaviors

```
A wCDM accretion model
```

```
Conclusions and developments
```

References

Proposed fluids

□ Single perfect fluid

 $p = -\rho$ Schwarzschild–de Sitter

Imperfect fluid with heat transport
 [Faraoni and Jacques, 2007, Gao et al., 2008]

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \pm \frac{S(\rho+p)au^1\left(1-\frac{m}{2ar}\right)}{2}\sqrt{1+a^2\left(1+\frac{m}{2ar}\right)(u^1)^2}$$

Introduction

Accretion models with no back reaction

Back Reaction analysis

The consistency problem

McVittie: Exact solutions and

behaviors

A wCDM accretion model

Conclusions and developments

References

Proposed fluids

□ Single perfect fluid

 $p = -\rho$ Schwarzschild–de Sitter

Imperfect fluid with heat transport
 [Faraoni and Jacques, 2007, Gao et al., 2008]

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \pm \frac{S(\rho+p)au^1\left(1-\frac{m}{2ar}\right)}{2}\sqrt{1+a^2\left(1+\frac{m}{2ar}\right)(u^1)^2}$$

Two perfect dust-like fluids [Sultana and Dyer, 2005]

$$\frac{m(t)}{a(t)} = m_0$$

5th ICM - Porto 2010 - 10 / 13

Introduction
Accretion models with
חס שמכג ופמכנוסח
Back Reaction analysis
The consistency problem
McVittie: Exact
solutions and behaviors
A w CDM accretion
model
Conclusions and developments
developments
References

Introduction	•
Accretion models with no back reaction	• • • • •
Back Reaction analysis	•
The consistency problem	• • • • •
McVittie: Exact solutions and	• • • •
behaviors	•
model	• • •
Conclusions and developments	• • • •

References

Two non-interacting perfect fluids

A $w {\rm CDM}$ accretion model

Introduction

Accretion models with no back reaction

Back Reaction analysis

The consistency problem

McVittie: Exact

solutions and

behaviors

A $w {\rm CDM}$ accretion model

Conclusions and developments

References

Two non-interacting perfect fluids

$$T^{\mu\nu} = (\rho_1 + p_1) k^{\mu} k^{\nu} - p_1 g^{\mu\nu} + \rho_2 u^{\mu} u^{\nu}$$

Introduction

Accretion models with no back reaction

Back Reaction analysis

The consistency problem

McVittie: Exact

solutions and

behaviors

A wCDM accretion model

Conclusions and developments

References

Two non-interacting perfect fluids

 $T^{\mu\nu} = \underbrace{(\rho_1 + p_1) \, k^{\mu} k^{\nu} - p_1 g^{\mu\nu}}_{\bullet} + \rho_2 u^{\mu} u^{\nu}$

null dark energy

5th ICM - Porto 2010 - 11 / 13

Introduction

Accretion models with no back reaction

Back Reaction analysis

The consistency problem

McVittie: Exact

solutions and

behaviors

A wCDM accretion model

Conclusions and developments

References

Two non-interacting perfect fluids

 $T^{\mu\nu} = (\rho_1 + p_1) k^{\mu} k^{\nu} - p_1 g^{\mu\nu} + \rho_2 u^{\mu} u^{\nu}$

dark matter

Introduction Accretion models with no back reaction Back Reaction analysis The consistency problem McVittie: Exact solutions and behaviors A wCDM accretion model Conclusions and developments References

Two non-interacting perfect fluids

$$T^{\mu\nu} = (\rho_1 + p_1) k^{\mu} k^{\nu} - p_1 g^{\mu\nu} + \rho_2 u^{\mu} u^{\nu}$$

Einstein equations only allow phantom dark energy

$$(\rho_1 + p_1)(k^1)^2 + \rho_2(u^1)^2 = 0$$

Introduction

Accretion models with no back reaction

Back Reaction analysis

The consistency problem

McVittie: Exact

solutions and

behaviors

A wCDM accretion model

Conclusions and developments

References

Two non-interacting perfect fluids

$$T^{\mu\nu} = (\rho_1 + p_1) k^{\mu} k^{\nu} - p_1 g^{\mu\nu} + \rho_2 u^{\mu} u^{\nu}$$

Einstein equations only allow *phantom* dark energy

$$(\rho_1 + p_1)(k^1)^2 + \rho_2(u^1)^2 = 0$$

Black hole mass evolution

$$\frac{\mathrm{d}m}{\mathrm{d}t} = -S\left(\frac{1-\frac{m}{2ar}}{1+\frac{m}{2ar}}\right)^4 \left[\left(\rho_1+p_1\right)\left(k^0\right)^2 + \rho_2\sqrt{\left(k^0\right)^4\frac{(\rho_1+p_1)^2}{\rho_2^2} - \frac{\left(1+\frac{m}{2ar}\right)^2}{\left(1-\frac{m}{2ar}\right)^2}\left(k^0\right)^2\frac{(\rho_1+p_1)}{\rho_2}}\right]$$
(3)

5th ICM – Porto 2010 – 11 / 13

Introduction
Accretion models with
no back reaction
Back Reaction analysis
The consistency
problem
McVittie: Exact solutions and
behaviors
A w CDM accretion
model
Conclusions and
developments
References

Introduction Accretion models with no back reaction	
Back Reaction analysis	Full solution to the Einstein equations must determine
The consistency problem	
McVittie: Exact solutions and behaviors	
A w CDM accretion model	
Conclusions and developments	
References	

Introduction	
Accretion models with no back reaction	
Back Reaction analysis	Full solution to the Einstein equations must determine
The consistency problem	
McVittie: Exact solutions and behaviors	\square $ ho(r,t)$, $p(ho)$
A w CDM accretion model	
Conclusions and developments	
References	

Introduction Accretion models with no back reaction Full solution to the Einstein equations must determine Back Reaction analysis The consistency problem McVittie: Exact solutions and behaviors A wCDM accretion model Conclusions and developments

References

Introduction Accretion models with no back reaction Back Reaction analysis The consistency problem McVittie: Exact solutions and $\Box a(t)$ behaviors A wCDM accretion model Conclusions and developments

References

Full solution to the Einstein equations must determine

 $\Box \quad u^{\mu}(r,t)$, $k^{\mu}(r,t)$

$\begin{array}{|c|c|c|c|} \hline \label{eq:constraint} \hline \\ \hline \mbox{Accretion models with} \\ \hline \mbox{no back reaction} \\ \hline \mbox{Back Reaction analysis} \\ \hline \mbox{Full solution to the Einstein equations must determine} \\ \hline \mbox{Full solution to the Einstein equations must determine} \\ \hline \mbox{Full solution to the Einstein equations must determine} \\ \hline \mbox{Full solution to the Einstein equations must determine} \\ \hline \mbox{Consistency} \\ \hline \mbox{McVittie: Exact} \\ \mbox{solutions and} \\ \hline \mbox{behaviors} \\ \hline \mbox{A wCDM accretion} \\ \hline \mbox{model} \\ \hline \mbox{Conclusions and} \\ \hline \mbox{developments} \\ \hline \mbox{W}(r,t), k^{\mu}(r,t) \\ \hline \mbox{A } \\ \hline \mbox{McVittie}, k^{\mu}(r,t) \\ \hline \mbox{A } \\ \hline \mbox{McVittie}, k^{\mu}(r,t) \\ \hline \mbox{A } \\ \hline \mbox{McVittie}, k^{\mu}(r,t) \\ \hline \mbo$

References

5th ICM - Porto 2010 - 12 / 13

Introduction Accretion models with no back reaction Full solution to the Einstein equations must determine Back Reaction analysis The consistency problem $\Box \quad \rho(r,t), p(\rho) \\ \Box \quad a(t) \\ \Box \quad u^{\mu}(r,t), k^{\mu}(r,t)$ McVittie: Exact $ig \}$ Already known for $r o \infty$ solutions and behaviors A wCDM accretion model Conclusions and m(t)developments References

5th ICM - Porto 2010 - 12 / 13

References

Approximate solutions might provide a simple back-reaction framework

5th ICM - Porto 2010 - 12 / 13

Introduction Accretion models with no back reaction Full solution to the Einstein equations must determine Back Reaction analysis The consistency problem $\begin{array}{c|c} & \rho(r,t), p(\rho) \\ \hline & a(t) \\ \hline & u^{\mu}(r,t), k^{\mu}(r,t) \end{array} \end{array} \right\} \text{Already known for } r \to \infty$ McVittie: Exact solutions and behaviors A wCDM accretion model Conclusions and m(t)developments References

Approximate solutions might provide a simple back-reaction framework
 Accretion of different types of fluids may be investigated
 [Barrow, 1988]

Introduction Accretion models with no back reaction Full solution to the Einstein equations must determine Back Reaction analysis The consistency problem $\Box \quad \rho(r,t), p(\rho) \\ \Box \quad a(t) \\ \Box \quad u^{\mu}(r,t), k^{\mu}(r,t)$ McVittie: Exact Already known for $r \to \infty$ solutions and behaviors A wCDM accretion model Conclusions and m(t)developments

- Approximate solutions might provide a simple back-reaction framework
 - Accretion of different types of fluids may be investigated [Barrow, 1988]
 - Work in progress

References

References

Introduction	
Accretion models with no back reaction	[Babichev et al., 2005] Babichev, E. O., Dokuchaev, V. I., and Eroshenko, Y. N. (2005). The accretion of dark energy onto a black hole.
Back Reaction analysis	Journal of Experimental and Theoretical Physics, 100(3):528–538.
References	[Barrow, 1988] Barrow, J. D. (1988). String-driven inflationary and deflationary cosmological models. <i>Nuclear Physics B</i> , 310(3-4):743–763.
	[Faraoni and Jacques, 2007] Faraoni, V. and Jacques, A. (2007). Cosmological expansion and local physics. <i>Physical Review D</i> , 76(063510).
	[Gao et al., 2008] Gao, C. J., Chen, X., Faraoni, V., and Shen, YG. (2008). Does the mass of a black hole decrease due to the accretion of phantom energy? <i>Physical Review D</i> , 78(024008).
	[Guariento et al., 2008] Guariento, D. C., Horvath, J. E., Custódio, P. S., and de Freitas Pacheco, J. E. (2008). Evolution of primordial black holes in a radiation and phantom energy environment. <i>General Relativity and Gravitation</i> , 40(8):1593–1602.
	[Khlopov, 2007] Khlopov, M. Y. (2007). Primordial black holes. In de Freitas Pacheco, J. A., editor, Recent Advances on the Physics of Compact Objects and Gravitational Waves. Research Signpost.
	[Lima et al., 2010] Lima, J. A. S., Pereira, S. H., Horvath, J. E., and Guariento, D. C. (2010). Phantom accretion by black holes and the generalized second law of thermodynamics. <i>Astroparticle Physics</i> , 33.
	[Sultana and Dyer, 2005] Sultana, J. and Dyer, C. C. (2005). Cosmological black holes: A black hole in the Einstein–de Sitter universe. General Relativity and Gravitation, 37(8):1349–1370.
DCG, JEH	5 th ICM – Porto 2010 – 13 / 1

5th ICM – Porto 2010 – 13 / 13