Galaxy Clusters at Microwave frequencies: awaiting Planck

António da Silva CAUP

5th Iberian Cosmology meeting, Porto, 31 March 2010

I - Galaxy Clusters

> Largest collapsed structures

- containing from hundreds of galaxies
- typically 1-2 Mpc / 1014 1015 MSUN
- grav. potential filled with hot gas (~1-15 keV)
- > Galaxy clusters are probes sensitive
 - · Cosmology (abundance, redshift evolution, distances ...)

 Structure Formation mechanisms (intrinsic cluster properties, cluster scaling relations, statistics and growth rate of perturbations,...)

> Observations in a wide range of frequencies

Galaxy Clusters at microwave frequencies New generation of CMB experiments

Reprinted from Bartlett 2006

Name	Frequencies	Res. fwhm	Start	Inst. noise	Surf. dens. (5σ)	Survey Area	
	[GHz]	[arcmin]	date	$[\mu K/beam]$	$[deg^{-2}]$	$[\deg^2]$	
Interferometers							
AMI	15	1-2	2006	8	16	10	
AMiBA	95	~ 2	2006				
SZA	30 (+90)	~ 1	2006				
Bolometers							
ACT	145	1.7	2006	1.7	40	200	
	225	1.1		4.8			
	265	0.93		7.8			
APEX	150	0.8	2006				
	217	0.8					
SPT	150	1	2007	10	11		
	220	0.7		60		4000	
	275	0.6		100			
Planck	143	7.1	2008	6	0.35		
	217	5		13		40000	
	353	5		40			

Number counts as probes of Dark Energy

- Redshift distribution of cluster halos

Nunes, da Silva, Aghanim, 2006, A&A, 450, 899

Inimally coupled Quintessence Models

Number counts as probes of Dark Energy

- minimally coupled Dark Energy Models

Equations of state:

- 3 models with w= const.
- · 2 models with w=w(z)

$$V(\phi) = V_0 \left(e^{\alpha \kappa \phi} + e^{\beta \kappa \phi} \right)$$

• $2EXP_1 (\alpha = 6.2, \beta = 0.1)$ • $2EXP_2 (\alpha = 20.1, \beta = 0.5)$

Dark Energy hypothesis:

- · homogeneous (pDE, halo=pDE, back)
- · inhomogeneous (pDE, halo = pDE, back)

- Redshift distribution of cluster halos

$$\mathcal{N}^{\rm bin} \equiv \frac{dN}{dz} = \int_{4\pi} d\Omega \int_{M_{\rm inf}}^{M_{\rm sur}} \frac{dn}{dM} \frac{dV}{dz d\Omega} dM$$

Cosmology dependent

minimally coupled Quintessence models

Quintessence models coupled to Dark Mater

Number counts as probes of Dark Energy

Number counts differences are small (1-2 clusters/deg^2)

✓ Large Sky Surveys probing as deep as z~1.5-2 would be necessary
 ✓ Simultaneous constraints on different categories of objects
 maximize discrimination between DE models
 ✓ High sensitivity (Low detections threshold) would improve model

discrimination

52/X-rays cluster surveys

✓ Mass is not a direct observable: gas Temperatures, Luminosities and SZ integrated Fluxes are.

✓ How gas properties relate with Mass?

V Dark Energy differences may be masked by gas physical processes

Cluster Scaling relations: ✓ Need to know dependence on gas physics ✓ What's their evolution with redshift? ✓ Do they depend on DE? The Role of the Baryonic Gas Physics:

Local Cluster scalings in minimally coupled homogeneous DE hydrodynamic simulations

Fig. 1. Cluster scaling relations $L_{X,200} - T_{X,200}$ (left panel) and $Y_{200} - M_{200}$ (right panel) at redshift zero. Displayed quantities are computed within R_{200} , the radius where the mean cluster density is 200 times larger than the critical density. The embedded plots show the best fits with a power law to clusters represented in the main plots for the w = -1 (triangles), w = -0.8 (diamonds), 2EXP1 (squares) and w = -1.2 (circles) models. The shaded regions in the embedded plots give the typical scatter of the fits, i.e. the r.m.s dispersion around the best fit lines.

Evolu home	tion of Cluster Scalings in ogeneous quintessence models
	$T_{\rm X} = A_{\rm TM} (M/M_0)^{\alpha_{\rm TM}} (1+z)^{\beta_{\rm TM}} E(z)^{2/3} ,$
	$Y = A_{\rm YM} (M/M_0)^{\alpha_{\rm YM}} (1+z)^{\beta_{\rm YM}} E(z)^{2/3} ,$
	$Y = A_{\rm YT} \; (T_{\rm mw}/T_{\rm mw,0})^{\alpha_{\rm YT}} \; (1+z)^{\beta_{\rm YT}} \; E(z)^{-1} \; , \label{eq:Y}$
	$L_{\rm X} = A_{\rm LT} (T_{\rm X}/T_{\rm X,0})^{\alpha_{\rm LT}} (1+z)^{\beta_{\rm LT}} E(z) ,$
	$Y = A_{\rm YL} \left(L_{\rm X} / L_{\rm X,0} \right)^{\alpha_{\rm YL}} (1+z)^{\beta_{\rm YL}} E(z)^{-9/4} ,$

Temperature-Mass:

-

· model differences within error uncertainties

error uncertainties

The Role of the Baryonic Gas Physics

Evolution of Cluster Scalings: dependence with gas physics

<u>Simulation data</u>: GO: Adiabatic ; PC: Pre-heating+cooling; FO: hybrid implementation of feedback by galaxy population from Short, Thomas et al. (members of Millenium gas Project), astro-ph/1002.4539. CF: cooling+feedback from kay, da Silva et al. (clef-ssh collab.) MNRAS, 2007, 348, 1401

Observations: PCA09 from Pratt, Croston, Arnaud, Bohringer, 2009, A&ASup, 498, 361; MJF08: Maughan, Jones, Forman, Speybroeck, 2008, ApJ Supp, 174, 117

Concluding remarks:

Dark energy simulations of Clusters:

- > Gas physics may mask/jeopardise DE parameter constraints
- > Good knowledge of the main gas physical processes is necessary
- Cluster scalings in minimally coupled simulations appear fairly insensitive to DE
- > If so, Lambda CDM scalings can be used for different DE models

The role of gas physics:

- No general consensus on scaling evolution has yet emerged from simulations or observations. Comparisons require care.
- > High-quality, high-reshift observations play a crucial role in validating clusters as cosmological probes
- Large cluster surveys with good knowledge of selection effects will be most welcome!

CLEF simulations:

concordance cosmology: L=200 Mpc/h ; N=2(428)^3

hydrodynamics. with energy feedback and cooling clef-ssh collaboration: http://www.astro.up.pt/~asilva/CLEF_SSH/ public/sim_runs_pub.html

Simulations for polarization studies:

- concordance model: L=80 Mpc/h ; N=2(256)^3
- hydrodynamics: Adiabatic

simulations

• Collaboration: G. C Liu (U. Taiwan); N. Aghanim (IAS)

Dark-Energy simulations:

- several dark-energy models: L=100 Mpc/h ; N=2(160)^3
- hydrodynamics: Adiabatic and cooling
- Collaboration: N. Nunes (Cambridge); N. Aghanim (IAS)

Simulations with Dust:

- concordance cosmology: L=100 Mpc/h ; N=2(160)^3
- hydrodynamics: several cooling dust models
- Collaboration with CESR, Ob-PM, IAS

Large cluster catalogues:

wide range of mass: 2.5e13 36 catalogues 0<z<1.5

simulation:

Sky patches (light cone integration):

high-z convergence hydro quality maps
characterization of the signal and selection function

Thermal SZ effect: (electron thermal motions)

$$\Delta I_{\rm th} = I_0 g(x) y \qquad \frac{\Delta T_{\rm th}}{T} = \left[\frac{x \left(e^x + 1\right)}{e^x - 1} - 4\right] y$$

$$y = \int \frac{\kappa_{\rm B} \sigma_{\rm T}}{m_{\rm e} c^2} T_{\rm e}(l) n_{\rm e}(l) dl$$
$$g(x) = \frac{x^4 e^x}{(e^x - 1)^2} \left[\frac{x (e^x + 1)}{e^x - 1} - 4 \right]$$

Kinetic SZ effect: (bulk motion of the gas)

$$\Delta I_{k} = -I_{0}h(x)\frac{v_{r}}{c}\tau$$
$$\frac{\Delta T_{k}}{T} = -\frac{v_{r}}{c}\tau$$
$$\tau = \int \sigma_{T} n_{e}(l) dl$$
$$h(x) = \frac{x^{4}e^{x}}{(e^{x} - 1)^{2}}$$

