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Introduction

✘ traditionally, stellar pulsations are calculated assuming spherical symmetry
✘ however, neither stellar rotation nor stellar magnetism respect this symmetry
✘ Oscillation modes are no longer described by a single spherical harmonic
✘ No longer 1D calculations, but 2D or 3D

1/28



XFirst XLast XPage XFull Screen XClose

Outline

1. The effects of stellar rotation

2. The effects of stellar magnetism

3. Conclusion
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Incidence of stellar rotation

A few statistics :
E. Rodŕıguez et al.: δ Sct stars 471

Fig. 1. Distribution of the variables in the catalogue (N) as
function of the spectral type (ST )

cases, the old values do not change. The main sources for
changes have been V and B − V from the Hipparcos cat-
alogue (ESA, 1997) and rotational velocities from Solano
& Fernley (1997), but no trends are shown with the new
values.

2.2. Content

Figures 1 to 6 give us some insight about the content
of the catalogue. Figures 1 to 4 show the correspond-
ing distributions as functions of the spectral type, rota-
tional velocity, visual amplitude and period, respectively.
Figures 5 and 6 display some interesting cross-correlations
found between these parameters. In Fig. 1, only variables
with well defined available spectral types have been taken
into account, hence peculiar stars were not included in the
sample. As it can be seen, the majority of these stars have
spectral types between A6 to F2, with a peak at F0.

In relation to Fig. 2, by comparing this figure with
Fig. 7 of the R94 catalogue, the peak corresponding to the
interval 60−80 km s−1 has disappeared. Now, the distribu-
tion is more smoothed and the stars seem to be uniformly
distributed in all the range for rotational velocities lesser
than 180 km s−1. Only a peak remains for very low values
of vsini. This peak is due to the variables with high ampli-
tudes of luminosity variation. This is confirmed when we
plot Fig. 5, where the visual amplitudes versus rotational
velocities are shown. Similarly to R94, these two figures
point out that stars with large rotational velocities do not
exhibit large amplitudes, that is, the variables displaying
large amplitudes are very slow rotators. In fact, the mean
value of vsini for δ Sct variables with ∆V ≤ 0.m03 is found
to be of 109(±58) km s−1 whereas this is much smaller
for the large amplitude pulsators (< vsini > = 22(±10)
km s−1 for the variables with ∆V ≥ 0.m1 and a very sim-
ilar value is found for the variables with ∆V ≥ 0.m3).

Fig. 2. Distribution of the variables in the catalogue (N) as
function of the rotational velocity (vsini)

Fig. 3. Distribution of the variables in the catalogue (N) as
function of the visual amplitude (∆V )

Fig. 4. Distribution of the variables in the catalogue (N) as
function of the period (P )

δ Scuti (Rodŕıguez et al., 2000)

We consider a photometrically detected frequency as also
spectroscopically detected if the variation is present and clearly
recognizable in radial velocity analyses or line profile varia-
tions, but do not insist on detections in both of these spectro-
scopic observables.

For several stars, some frequencies reached detectable am-
plitudes only during some observations. We list all frequencies
ever detected from analyses that convinced us.

5. ANALYSIS

5.1. Basic Observational Quantities

In this section we present analyses performed on the intrinsic
93 � Cephei variables. We analyze the distribution of spectral
type (see Fig. 1), radial velocity (RV), projected rotational ve-
locity (v sin i ), apparent brightness in Johnson V and pulsation
period (P) (see Fig. 2). In addition, we examine the Galactic
distribution (see Fig. 3) as well as the dependence of the pul-
sational amplitudes on the projected rotational velocities (see
Fig. 4), and thereby describe the � Cephei stars as a group.

5.1.1. Spectral Type and Luminosity Class

The three-dimensional histogram in Figure 1, which is in-
spired by Figure 4 of Sterken & Jerzykiewicz (1993), shows the
distribution of the confirmed 93 � Cephei stars according to
their spectral type and luminosity class. It shows that �20% of
the � Cephei stars appear to be B1 dwarfs. A total of 66% of the
stars are of spectral type B1 and B2 and luminosity classes III–
V. This distribution resembles very closely the spectral type
range occupied by the confirmed � Cephei stars from Sterken &
Jerzykiewicz (1993), where almost all stars lie within B0 and
B2.5. Most of the class V variables are members of open clus-
ters (80%). Two of the stars from Tab. 1 do not yet have a spec-
tral type assigned (NGC 6910 27 and V2187 Cyg) and for
3 stars no luminosity class was associated to the spectral type
(NGC 663 4, NGC 6910 16, and HN Aqr). As will be shown in
x 5.2, the assignment of luminosity classes I–III to some of
these stars must be erroneous.

5.1.2. Projected Rotational Velocity

The range of projected rotational velocity, v sin i, extends
from 0 to 300 km s�1with HD 165174 as the fastest rotator with
300 km s�1, closely followed by NGC 4755 I with 296 km s�1.
HD 165174 is also a Be star, whereas NGC 4755 I went through

Fig. 1.—Distribution of stars according to spectral type and luminosity class.
The letters a, b, c, and d correspond to the intermediate luminosity classes I–II,
II–III, III–IV, and IV–V. [See the electronic edition of the Supplement for a
color version of this figure.]

Fig. 2.—Histograms of radial velocity, projected rotational velocity, ap-
parent magnitude, and pulsation period.

Fig. 3.—Distribution of stars according to Galactic longitude and latitude.

CATALOG OF GALACTIC � CEPHEI STARS 197No. 2, 2005

β Cephei (Stankov & Breger, 2005)

ζ Oph stars(based on Balona &
Dziembowski, 1999)
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Targets for space missions

Identification Name Type v · sin i (in km · s−1) Mission
HD 187642 Altair δ Scuti 230 WIRE
HD 149757 ζ Oph ζ Oph 380 MOST
HD 181555 δ Scuti 170 CoRoT
HD 49434 γ Doradus 90 CoRoT
HD 171834 γ Doradus 72 CoRoT
HD 170782 δ Scuti 198 CoRoT
HD 170699 δ Scuti > 200 CoRoT
HD 177206 δ Scuti > 200 CoRoT
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Effects of rotation

✘ Two forces appear because of rotation
• centrifugal force : stellar deformation and modification of equilibrium quantities
• Coriolis force : intervenes in all dynamical processes

L48 A. Domiciano de Souza et al.: The spinning-top Be star Achernar from VLTI-VINCI

Fig. 1. VLTI ground baselines for Achernar observations and their
corresponding projections onto the sky at different observing times.
Left: Aerial view of VLTI ground baselines for the two pairs of 40 cm
siderostats used for Achernar observations. Color magenta represents
the 66 m (E0-G1; azimuth 147◦, counted from North to East) and
green the 140 m (B3-M0; 58◦). Right: Corresponding baseline pro-
jections onto the sky (Bproj) as seen from the star. Note the very effi-
cient Earth-rotation synthesis resulting in a nearly complete coverage
in azimuth angles.

detection of stellar asymmetries. Moreover, Earth-rotation has
produced an efficient baseline synthesis effect (Fig. 1, right).
A total of more than 20 000 interferograms were recorded on
Achernar, and approximately as many on its calibrators, cor-
responding to more than 20 hours of integration. From these
data, we obtained 60 individual V2 estimates, at an effective
wavelength of λeff = 2.175 ± 0.003 µm.

3. Results
The determination of the shape of Achernar from our set of V2

is not a straightforward task so that some prior assumptions
need to be made in order to construct an initial solution for
our observations. A convenient first approximation is to de-
rive from each V2 an equivalent uniform disc (UD) angu-
lar diameter �UD from the relation V2 = |2J1(z)/z|2. Here,
z = π �UD (α) Bproj (α) λ−1

eff , J1 is the Bessel function of the
first kind and of first order, and α is the azimuth angle of Bproj
at different observing times due to Earth-rotation. The appli-
cation of this simple procedure reveals the extremely oblate
shape of Achernar from the distribution of �UD(α) on an el-
lipse (Fig. 2). Since α, Bproj(α), and λeff are known much bet-
ter than 1%, the measured errors in V2 are associated only to
the uncertainties in �UD. We performed a non-linear regres-
sion fit using the equation of an ellipse in polar coordinates.
Although this equation can be linearized in Cartesian coor-
dinates, such a procedure was preferred to preserve the orig-
inal, and supposedly Gaussian, residuals distribution as well
as to correctly determine the parameters and their expected
errors. We find a major axis 2a = 2.53 ± 0.06 milliarcsec
(mas), a minor axis 2b = 1.62 ± 0.01 mas, and a minor-
axis orientation α0 = 39◦ ± 1◦. Note that the correspond-
ing ratio 2a/2b = 1.56 ± 0.05 determines the equivalent star

Fig. 2. Fit of an ellipse over the observed squared visibilities V2 trans-
lated to equivalent uniform disc angular diameters. Each V2 is plotted
together with its symmetrical value in azimuth. Magenta points are
for the 66 m baseline and green points are for the 140 m baseline.
The fitted ellipse results in major axis 2a = 2.53 ± 0.06 milliarcsec,
minor axis 2b = 1.62 ± 0.01 milliarcsec, and minor axis orientation
α0 = 39◦±1◦ (from North to East). The points distribution reveals an
extremely oblate shape with a ratio 2a/2b = 1.56 ± 0.05.

oblateness only in a first-order UD approximation. To interpret
our data in terms of physical parameters of Achernar, a consis-
tent scenario must be tailored from its basic known properties,
so that we can safely establish the conditions where a coherent
model can be built and discussed.

4. Discussion
Achernar’s pronounced apparent asymmetry obtained in this
first approximation, together with the fact that it is a Be star,
raises the question of whether we observe the stellar photo-
sphere with or without an additional contribution from a CSE.

For example, a flattened envelope in the equatorial plane
would increase the apparent oblateness of the star if it were
to introduce a significant infrared (IR) excess with respect
to the photospheric continuum. Theoretical models (Poeckert
& Marlborough 1978) predict a rather low CSE contribution
in the K band especially for a star tilted at higher inclina-
tions, which should be our case as discussed below. Indeed,
Yudin (2001) reported a near IR excess (difference between
observed and standard color indices in visible and L band
centered at 3.6 µm) to be E(V − L) = 0.m2, with the same
level of uncertainty. Moreover, this author reports a zero in-
trinsic polarization (p∗). These values are significantly smaller
than mean values for Be stars earlier than B3 (E(V − L) >
0.m5 and p∗ > 0.6%), meaning that the Achernar’s CSE is
weaker than in other known Be stars. Further, an intermediate

Domiciano de Souza et al. (2003)
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Models of rapidly rotating stars

A few references :
✘ Meynet and Maeder (1997-2000)
✘ Roxburgh (2004, 2006)
✘ Jackson et al. (2005), MacGregor et al. (2006)
✘ ESTER (Rieutord et al., 2005, Rieutord, 2006)

174 I. W. Roxburgh: Rapidly rotating stars

2.3. Solution of the structure equations

The structure Eqs. (14)−(17) were solved using a scaled down
version of my stellar evolution code, setting time derivatives
to zero, using a fixed composition (X = 0.70, Z = 0.02)
and equilibrium pp and CN cycle nuclear reactions, and in-
corporating the factors A, B,C,D. The equation of state was
OPAL EOS2001 (Rogers & Nayfonov 2001) and the opacities
a smooth blend of OPAL GN93 (Iglesias & Rogers 1996) and
Alexander & Ferguson (1994) tables; interpolation in the tables
was by local splines which ensures continuity of first deriva-
tives. Convection was described by the local mixing length
model (see Appendix A) with α = 1.8, and convective mixing
is treated as a diffusion process with the diffusion coefficient
determined by the convective model. The structure equations
are discretised to 2nd order on the mesh in M(i) and solved
by relaxation, the solution is taken as having converged when
the relative changes in all variables, δVi/Vi, are less than some
specified value, normally set as 1/N2

i where Ni is the number
of mesh points.

2.4. Surface boundary conditions

The structure of the surface layers of rotating stars is another
area where our understanding is poor and effort needs to be put
in to understand the physics of these layers. This is the case
even for a slowly rotating star like the Sun where a better un-
derstanding of the structure of outer layers is needed before we
can determine the expected shape of the solar surface. This is a
problem with a long history going back to the interpretations of
the solar oblateness measured by Dicke & Goldenberg (1967).
Osaki (1966) proposed that the distribution of angular veloc-
ity is such that there is no meridional circulation and that this
distribution differs little from that of uniform rotation. We shall
here retain the assumption of uniform rotation in the surface
layers, deferring to subsequent work a more detailed study of
the atmosphere.

Since P, T are then constant on equipotential surfaces the
surface boundary condition must also be constant on equipo-
tentials. My evolution code has a simple grey Eddington at-
mosphere which is incorporated into the model by the simple
expedient of imposing the surface boundary condition T 4 =

0.75 T 4
eff(τ + 2/3), P = gτ/κ, high up in the radiative atmo-

sphere an optical depth τ ≈ 0.01−0.001 Since in a rotating
star the flux F, and hence the local Teff, and the local value of
effective gravity |∇Ψ|, vary over an equipotential surface, we
replace them by Ts, gs, their values averaged over the surface
equipotential

T 4
s =

L
σS ψ

=
L

4πσs2A
, gs =

∫

∇Ψ.dS

S ψ

=
GM
s2

C
A

(27)

where S ψ is the area of the equipotential, and take the boundary
condition as T 4 = 0.75T 4

s (τ + 2/3), P = gsτ/κ at some τ. This
condition is then independent of the angle θ f along which we
calculate the model.

Fig. 1. Equipotential surfaces in a model of 2 M� with an angular ve-
locity Ω = 2.2 × 10−4 rad/s. The points on these equipotentials are the
fitting points (rk, θk).

2.5. Mesh resolution and accuracy

Most models were computed taking the reference angle θ f =

π/2, ie along the equator; with Ni = 1000 for the mesh in Mi,
Nk = 8 for the solution of Poisson’s equation, and N j = 360 for
the computation of the factors A, B,C,D. All of θ f ,Ni,N j,Nk

were varied to check that the accuracy of the calculations was
of the order of 1:105. Details are given in Sect. 4 below. The
advantage of taking θ f = π/2 is that it was not necessary to
extend the radial mesh beyond the surface when calculating the
gravitational potential.

3. Results

Figure 1 shows the equipotential surfaces in a zams star of 2 M�
rotating with angular velocity Ω = 2.2 × 10−4 rad/s and equa-
torial velocity of 299 km s−1. The model was computed with
the angular variation of ρ,Φ modelled by Legendre polynomi-
als P2k, k = 0, 8, fitted at angles θk = kπ/2, k = 0, 8. The refer-
ence angle along which the model was computed was θ f = π/2,
the radial mesh was Ni = 1000 and the angular mesh N j = 360.
Figure 2 shows the variation of the factors A, B,C,D with ra-
dius for this model

Tables 1–4 list the properties of a family of models with
masses 1, 2, 5, 10 M� for a range of angular velocities. In all
cases the luminosity and polar radius decreases with increasing
angular velocity. as was found to be the case in earlier work
using a two zone perturbation model (Faulkner et al. 1968).

Note that for very rapid rotation the ratio of equatorial
to polar radius Re/Rp can exceed 1.5 and the parameter α =
Ω2R3

e/GM can exceed unity. This is primarily due to the con-
tribution of the gravitational quadrupole moment, Φ1(r)P2k

which enhances the gravitational attraction in the equatorial

1032 M. Rieutord: The dynamics of the radiative envelope of rapidly rotating stars. I.

Fig. 4. Left: the meridional circulation of the baroclinic flow generated by the Brunt-Väisälä frequency profile in Fig. 1b (solid curve) for a fluid
with constant viscosity. Right: the associated differential rotation showing the fast rotating pole and slow equator (solid lines are for positive
contours, dotted lines for negative ones).

Fig. 5. Radial profile at θ = 1rd of the velocity components of the baro-
clinic flow. Note that the vr and vθ have been multiplied by a factor
O(E−1/2)� 1.

brought about by turbulent convection in the core. The convec-
tive core is thus considered as a much more viscous fluid with
negligible stratifi cation (Brunt-Väisälä frequency is set to zero).

The interesting result is that the meridian circulation is
strongly modifi ed, as shown in Fig. 8. This fi gure shows that
the jump in the mean mechanical properties of the fluids gener-
ates a shear layer parallel to the axis of rotation. Such a layer is
a Stewartson layer, well-known in the dynamics of rotating flu-
ids. The dynamics of these layers is controlled by a delicate bal-
ance between viscous stress, pressure gradient and the Coriolis

Fig. 6. Same as Fig. 5, but with emphasis on the Ekman layer.

acceleration. As shown by Stewartson (1966), such layers are
nested layers whose width scales with ν1/3, ν1/4 or ν2/7. However,
while the properties of such layers are well known in the simple
case of incompressible fluids, they remain unexplored when the
fluid is stably stratifi ed like here.

The interesting point of this feature is that the scale of
the meridian flow is much reduced in one direction; the scale
controlling the shear layer pumping is O(E1/4) if we follow
Stewartson theory. This means that the circulation time is

Roxburgh (2004) Rieutord (2006)
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Rotation and oscillations

Two basic approaches to take the effects of rotation into account :

Perturbative approach
✘ the rotation rate Ω is considered to be small
✘ equilibrium model and oscillation modes :

~v = ~v0 + ~v1Ω + ~v2Ω2 + ...O
(
Ωn+1

)
ω = ω0 + ω1Ω + ω2Ω2 + ...O

(
Ωn+1

)
Complete approach
✘ the rotation rate Ω is not considered small
✘ equilibrium model and oscillation modes = a solution to a 2D problem which fully

includes the effects of rotation
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A few references...

Perturbative approach
✘ 2nd order methods :
• Saio (1981)
• Gough & Thompson (1990)
• Dziembowski & Goode (1992)

✘ 3rd order methods :
• Soufi et al. (1998)
• Karami et al. (2005)

Complete approach
✘ Clement (1981-1998)
✘ Dintrans et al. (1999), Dintrans & Rieutord (2000)
✘ Espinosa et al. (2004)
✘ Lignières et al. (2006), Reese et al. (2006)

8/28



XFirst XLast XPage XFull Screen XClose

Slow rotation rates

Perturbative expression of pulsation frequencies :

ω = ω0 −m(1− C)Ω +
(
D1 + D2m

2
)
Ω2 + m

(
T1 + T2m

2
)
Ω3 +O

(
Ω4

)
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Slow rotation rates

Perturbative expression of pulsation frequencies :
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(
Ω4

)

9/28



XFirst XLast XPage XFull Screen XClose

Slow rotation rates

Perturbative expression of pulsation frequencies :

ω = ω0 −m(1− C)Ω +
(
D1 + D2m

2
)
Ω2 + m

(
T1 + T2m

2
)
Ω3 +O

(
Ω4

)

9/28



XFirst XLast XPage XFull Screen XClose

Solar rotation profile

✘ use of 1st order methods
✘ inversion techniques

Schou et al. (1998), Thompson et al. (2003)
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High rotation rates

A multiplet :
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High rotation rates

Modes :

n = 1 to 6
` = 0 to 3
m = −` to `
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High rotation rates

Validity domain for 150
days of observation
(∆ω = 0.08 µHz)

- 1st order

- 2nd order

- 3rd order

(see Reese et al., 2006)
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Organisation of frequency spectrum

fn ` m = f0
n ` m + f1

n ` mΩ + f2
n ` mΩ2 + f3

n ` mΩ3 +O(Ω4)
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Organisation of frequency spectrum

fn ` m ' ∆nn + ∆`` + ∆m|m|+ α±

(see Lignières et al., 2006, and Reese, 2006)
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Avoided crossings
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Mode identification

n =? ` =?
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Outline

1. The effects of stellar rotation

2. The effects of stellar magnetism

3. Conclusion
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roAp stars

✘ Discovered by Kurtz in 1978

✘ Characteristics :
• peculiar chemical composition,
• strong dipolar magnetic field,

✘ Pulsation modes :
• luminosity variations with periods ranging from 5 to 15 min.
• well described by the oblique pulsator model (e.g. Kurtz, 1990)
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Magnetism and oscillations

A few references :
✘ Roberts & Soward (1983), Campbell & Papaloizou (1986)
✘ Dziembowski & Goode (1996), Bigot et al. (2000), Bigot & Dziembowski (2002)
✘ Cunha & Gough (2000), Cunha (2006)
✘ Balmforth et al. (2001), Théado et al. (2005)
✘ Rincon & Rieutord (2003), Reese et al. (2004)
✘ Saio & Gautschy (2004), Saio (2005)

Effects of magnetism :
✘ suppression of convection near magnetic poles → diffusion
✘ cyclic behaviour of frequency shifts
✘ self-similar structure in frequency spectrum
✘ magnetic shear layers
✘ magnetic oscillations and different frequency spectrum structure
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Magnetism, convection and diffusion

Balmforth et al. (2001) :
✘ convection suppressed in polar re-

gions due to vertical B
✘ chemical diffusion in polar regions
✘ enable κ mechanism in the hydro-

gen ionisation zone operating in po-
lar regions
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Trapping of magnetic waves

✘ coupling of acoustic and magnetic
waves in outer region, and decou-
pling below vA ≈ c

✘ dissipation of slow magnetic waves
below

✘ high damping rate when wave has
an antinode near vA ≈ c

✘ low damping rate when wave has a
node near vA ≈ c

Saio & Gautschy (2004), see also Cunha
& Gough (2000)
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Self similarity of frequency shifts

Saio (2004)

∆ω = f(ω0B
α
p )

(e.g. Cunha & Gough, 2000, Saio
& Gautschy, 2004)

α = 1/(1 + N) for polytropes
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Axis of pulsation

Bigot & Dziembowski (2002) predict that the pulsation axis is located somewhere
between the magnetic axis and the rotation axis.

X

y

BΩz

Z nMode plane

Dipole axis

and magnetic field in phase.
Extrema of pulsation 

δ

β

ξr
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Magnetic shear layers

✘ include viscosity and/or magnetic diffusivity
✘ magnetic shear layers
✘ may intervene in mode selection

672 F. Rincon & M. Rieutord: Shear Alfvén waves in magnetic stars

(Rincon & Rieutord, 2003)
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Alfvén waves

✘ different frequency spectrum
✘ different structure to pulsation modes
✘ certain types become singular in the ideal (inviscid) limit

(Reese et al., 2004)
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Latitudinal structure and quantification
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Outline

1. The effects of stellar rotation

2. The effects of stellar magnetism

3. Conclusion
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Conclusion

✘ stellar rotation and magnetism introduce many new phenomena
✘ increased difficulty for calculating pulsation modes
✘ need for powerful numerical and theoretical methods in order to interpret observed

pulsations
✘ exciting prospects for stellar physics
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Radial structure
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Radial structure
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Radial structure
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Radial structure
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Latitudinal structure

30/28



XFirst XLast XPage XFull Screen XClose

Latitudinal structure
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Latitudinal structure

30/28



XFirst XLast XPage XFull Screen XClose

Latitudinal structure
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Effects of viscosity and magnetic diffusivity

Empirical law (for E = Em) :

position ∝ E1/4

thickness ∝ E1/4
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Asymptotic formulas

• Analytical solutions for small diffusivities :

E = Kε, Em = Kmε, ε → 0

• Form of solutions :

b(r, ν) = bn(r)fn,q(ε−1/4ν) +O(ε1/2)
v(r, ν) = vn(r)fn,q(ε−1/4ν) +O(ε1/2)
λn,q = λ0

n + ε1/2λ1
n,q +O(ε)

• Zeroth order : radial structure (bn, vn) and mode quantification (n)
• Next order : latitudinal structure (fn,q) and mode quantification (q)

– use of adjoint system to obtain fn,q
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Non-axisymmetric modes

• poloidal and toroidal components are now coupled
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Comparison with axisymmetric modes

Poloidal

m = 1
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Comparison with axisymmetric modes

Toroidal

m = 1
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Conclusion

• Toroidal modes : singular

• Non-axisymmetric modes : poloidal or toroidal characteristics

• Prospects
– study of magneto-acoustic waves
– study of magneto-inertial waves
– understanding/constraining the interior of planets such as Jupiter
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Asymptotic developments

• Change of variables (r, ν = sin θ√
r

, ϕ)

• Scale change E1/4 = (K ε)1/4 and E1/4
m = (Km ε)1/4 where ε → 0

λb =
(

1− 1
2
ε1/2rν̂2

)[
1
r3

∂v

∂r
− 3v

2r4

]
+

ε1/2Km

r3
Θ[b]

λv =
(

1− 1
2
ε1/2rν̂2

)[
1
r3

∂b

∂r
+

3b

2r4

]
+

ε1/2K

r3
Θ[v]

where Θ[b] =
∂2b

∂ν̂2 +
1
ν̂

∂b

∂ν̂
− b

ν̂2
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Asymptotic developments

• at zeroth order, we have :

λ0b =
1
r3

∂v

∂r
− 3

2r4
v,

λ0v =
1
r3

∂b

∂r
+

3
2r4

b,

v(η) = 0, b(1) = 0.

⇒


b(r, ν) = bn(r)f(ν̂) +O(ε1/2)
v(r, ν) = vn(r)f(ν̂) +O(ε1/2)
λ = λ0

n +O(ε1/2)

• at next order, we get :

λ0
nb1 − 1

r3

∂v1

∂r
+

3v1

2r4
= −λ1b0

nf − λ0
nrν̂2b0

nf
2 + b0

nΘ[f ]

r3 ,

λ0
nv1 − 1

r3

∂b1

∂r
− 3b1

2r4
= −λ1v0

nf − λ0
nrν̂2v0

nf
2 + v0

nΘ[f ]

r3 ,

b1(r = 1, ν̂) = 0, v1(r = η, ν̂) = 0.

This is of the form L0Ψ1 = L1Ψ0 : solution of adjoint problem

⇒
{

f(ν̂) = fn,q(ν̂)
λ = λ0

n + ε1/2λ1
n +O(ε1/2)
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