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Understanding the Gralactic diskk o unveil the
formation and evolution of the Galaxy and of
galaxies

th} the disle:

The thin disk is the Galactic component where most star formakion
occurs and occurred in the past.

easy ko observ

It is rich with asb:oph;gg&' ol fossils and is relakive

(compared to the stellar halo or bulge/bar - —— — -

The study of resolved population in the
resolve spatially (and temporally) its me
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Understanding the Galactic disk to unveil the
formation and evolution of the Gralaxy and of
galaxies

A new era for models of galaxy formation and

evolution, including:

+ Cosmological context

e Dekailed nuctec:-ssjv\&hesis

. Dsjno\mms and Radial migra

Observational cov\s
e the shaye_ and Eh'
radial metallicibe
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Understanding the Galactic disk to unveil the
formation and evolution of the Gralaxy and of
galaxies

Cosmological simulations:

Ll

Pilkington et al. (2012):
suite of disk galaxy hydro-dynamical
simulations

-

Time/z evolution

Apollo
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Understanding the Galactic disk ko unveil the
formation and evolution of the Gralaxy and of

galaxies
Strong necessity of Observational constraints
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* High z-galaxies
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Understanding the Galactic disk to unveil the
formation and evolution of the Gralaxy and of
galaxies

Strong necessity of Observational constraints

i I
observational cownskrainks: .

* High z-galaxies

Gralactic Archeolog

¢ Can we add more
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Cralactic Archeotogj?
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The Gralactic gradient: recent Literature
resulks from nmany POPMLQ&LOMS
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Whv open clusters:
Numerous poputa&icn

* Ages and distances accurately determined, and spanning large
ranges

* Membership and accurate chemical compositions
* In principle, less affected by migration than single stars

They allow to derive the structure, kinematics and chemistry of the
disk, and, thanks to the large range of ages, also their time
variation,
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THE OLD OPEN CLUSTERS
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Figure 7 Radial abundance gradient for the old open clusters, with metallicities from Table 1.
Filled circles are points from Friel & Janes (1993) or Thogersen et al (1994). Starmred symbols
are preliminary metallicitics from Friel et al (1995). Crosses are data taken from Lynga (1987).
The solid line is a least-squares fit to the data that yields an abundance gradient of A[Fe/H)J/ Ry =
—0.091 £ 0.014.




Wh:? open clusters:

¢ Numerous poputa&:‘.cn

* Ages and distances accurately determined, and spanning large
ranges

* Membership and accurate chemical compositions

* In principle, less affected by migration than single stars

They allow to derive the structure, kinematics and chemistry of the
disk, and, thanks to the large range of ages, also their time
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Why open clusters:

* Numerous population

* Ages and distances accurately determined, and spanning large
ranges

* Membership and accurate chemical compositions

* In principle, less affected by migration than single stars

They allow to derive the structure, kinematics and chemistry of the
disk, and, thanks to the large range of ages, also their time
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Why open clusters:

* Numerous population

* Ages and distances accurately determined, and spanning large
ranges

* Membership and accurate chemical compositions

* In principle, less affected by migration than single stars

They allow to derive the structure, kinematics and chemistry of the
disk, and, thanks to the large range of ages, also their time
variation, T

Old open clusters and the Galactic metallicity gradient: Berkeley 20,
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ka open clusters:
Numerous Poputa&icn

* Ages and distances accurately determined, and spanning large
ranges

* Membership and accurate chemical compositions
* In principle, less affected by migration than single stars

They allow to derive the structure, kinematics and chemistry of the
disk, and, thanks to the large range of ages, also their time
variation,
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Wlmj open clusters:
Numerous Poputa&ien

* Ages and distances accurately determined, and spanning large
ranges

* Membership and accurate chemical compositions
* In principle, less affected by migration than single stars

They allow to derive the structure, kinematics and chemistry of the
disk, and, thanks to the large range of ages, also their time
variakion,

THE OPEN CLUSTER CHEMICAL ANALYSIS AND
MAPPING SURVEY: LOCAL GALACTIC METALLICITY
2 O 1 3 GRADIENT WITH APOGEE USING SDSS DR10

F T T H T T T T T T T T T T T T E
oo e 5 Main results
== ______:f|__~..=-:\.§<_‘__:0_og_d_cx kpee™  _ _ _ ¥ _ _ __ _ ] . “ . .
= E VO Y =i __ = 3 ] +  Negalive gradienk: inside-oub
—os E : [ : —0.02 dex kpe-i I““\“f i il
1 o ] formation of the disk
— GAF — AN ST =
= 0.2 F 1 . : ) ._; - . N .
20 sy f o goggo---3---5d-;--3 [l B modal gradient: different
=02 1 1 H 1 =T " N N 2 1 B 3
. G R i infall-SFR rate balance in the
osf i ouker and inner Galax
= S T S _!_;O-_OS_?_dex_kac: o _F_____ 3 .
S L eeeshE RS e
—0.5 |~ 1 i x T —
-1 1 : H 1 1
10 12 14



Why open clusters:

* Numerous population

* Ages and distances accurately determined, and spanning large
ranges

* Membership and accurate chemical compositions

* In principle, less affected by migration than single stars

They allow to derive the structure, kinematics and chemistry of the

disk, and, thanks to the large range of ages, also their time
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The radial gradient: Literature vs.
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The radial gradient: Literature vs.
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Opem cluskers: nok omi.j tron!

Elemental abundances in open clusters:

To study the temporal and spatial variation in the disk of
elemental abundances belonging to different nucleo-
synthesis channels, as for example [a/Fe] and neukron
capture elements

To investigate to stellar evolution
surface abundances, as mixing, as
parameters (age, me&atti«ci&v) [see
balkes]

To test the recovering of disperse
bagqing [see Sergis work and Dan
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Opeh clusters: not Ohi.:j tron!

Sample of elements in GES iDR2

ELemMent  MaAIN ProbucTiON SITE MECHANISM YIELD(SNIa/SNII)
160 Massive Stars Helium burning 8%
Na Massive Stars C, Ne, H burnings 1%
2%Mg Massive Stars C, Ne burnings 10%
Al Massive Stars C, Ne burnings 7%
8gi Massive Stars explosive and non-explosive O burning 60%
0Ca Massive Stars explosive and non-explosive O burning 67%
8¢ Massive Stars C, Ne burnings, & and v-wind (neutrino-powered wind) 49%
BTy Massive Stars and SNIa explosive Si burning and SNIa with He detonation 63%
Sty Massive Stars and SNIa explosive Si and O burnings, SNIa with He detonation, and @ and v~ 88%
2Cr Massive Stars and SNIa explosive Si burning, SNIa with He detonation, and & 84%
3Mn Massive Stars and SNIa explosive Si burning, SNIa, and v-wind 96%
Fe Massive Stars and SNIa explosive Si burning and SNIa 88%
BNj Massive Stars (and SNIa)  « (a-rich freeze-out from nuclear statistical equilibrium) and SNIa 75%
MCo Massive Stars and SNIa He-burning s-process, @, SNIa, and v 99%
&Cu Massive Stars He-burning s-process, C and Ne burning 73%
64Zn Massive Stars He-burning s-process, & and v-wind 51%
Ny Massive Stars He-burning s-process, and v-wind -
NZr Massive Stars He-burning s-process -
138Ba Low mass s-process -
13Eu Massive Stars v-wind -
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Chemical Eaggivx@:

how unique is the chemical po&&érm{ of each cluster?

The aims of chemical tagging:
understand open clusters to find dispersed clusters

Da Silva+09:
* Use open clusters to check
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Figure 1. Elemental abundances of old open clusters. Each symbol represents the mean abun-
dance value for individual clusters. The error bars show the typical measurement error. Original
references of the cluster data are given in Table 1.
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Chemical taqqing:

how u.v\iqu,e ts the chemical Po&&

The aims of chemical tagging:

understand open clusters to find dispersed clusters

Mitschang+14:

e First blind chemical tagging
experiments, after

~ calibrating the method with
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Chemical Eagg&hg;:
how unique is the chemical Po&&érv( of each cluster?

The aim here: understand common trend in clusters having similar
properties (age, distance, fe/h)
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Different clusters have different elemental abundance
There is also significant scatter for many of the elemen
* systematic uncertainties in elements with few lines
* intrinsic variations, especially in elements showing
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The aim here: understand common trend in clusters having similar
properties (age, distance, fe/h)
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Chemical Eaggiv\?:
how unique is the chemical Pa&f:é.rv( of each cluster?

The aim here: understand common trend in clusters having similar
properties (age, distance, fe/h)
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* All abundances are normalized to the Solar a of
* Enhancement respect to Solar: difference > +1
 Depletion respect to Solar: difference < -1-sign



[El/Fe]

Chemical tagqing

Inner disk clusters

Atomic Number

Inner disk clusters: common trends in some
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Chemical tagqing

Solar neighborhood clusters
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Solar neighborhood clusters: almost solar in
Enhanced Ba: Age effect (see D’Orazi et al. (
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Chemical tagqing:
wikh (DR2/3

With the larger sample of
iDR2/3 we are in the position:

Inner disk clusters
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* To compare clusters
belonging to different part

...................................................




Cownclusions:

Open clusters are valuable tools to understand the
evolution of the Galactic disk:

Drawing the shape of the gradient and its
Eemporat evolution

Preparing for fubure chemic
of the disk

Allowing to disentangle the
different parts of the disk .
chemical patters



[a/Fe]

Open clusters: not m\tv iron!
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Looom a From the literature (Yong et al. 2012):
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Final remark from Yong+12:

any interpretation of the abundance ratios
needs to acknowledge that the open

clusters were studied by various authors who

adopted different analysis techniques
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