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The application of Bayesian methods in cosmology and astrophysics has flourished over the past decade, spurred
by data sets of increasing size and complexity. In many respects, Bayesian methods have proven to be vastly superior
to more traditional statistical tools, offering the advantage of higher efficiency and of a consistent conceptual basis
for dealing with the problem of induction in the presence of uncertainty. This trend is likely to continue in the future,
when the way we collect, manipulate and analyse observations and compare them with theoretical models will assume
an even more central role in cosmology.

This review is an introduction to Bayesian methods in cosmology and astrophysics and recent results in the field.
I first present Bayesian probability theory and its conceptual underpinnings, Bayes’ Theorem and the role of priors.
I discuss the problem of parameter inference and its general solution, along with numerical techniques such as Monte
Carlo Markov Chain methods. I then review the theory and application of Bayesian model comparison, discussing
the notions of Bayesian evidence and effective model complexity, and how to compute and interpret those quantities.
Recent developments in cosmological parameter extraction and Bayesian cosmological model building are summarized,
highlighting the challenges that lie ahead.

Keywords: Bayesian methods:; model comparison; cosmology; parameter inference; data analysis; statistical methods.



The cosmological concordance ‘'mode/’ (D”
1D 68% Best fit
Cosmological parameters
Baryon density (), h2 x 102 2.2370-08 2.28
Cold dark matter density ), h? 0.106 + 0.004 0.107
Angular size of sound horizon ©, 1.043 £ 0.003 1.042
Optical depth to reionization 7 0.08470013 0.087

Expansion rate  Ho [Km s™'Mpc™'] | 74.3 £ 2.1 73.1

Power spectra parameters

Amplitude of fluctuations  In(P? x 10'9) 3.11715% 3.15

Scale dependence of ny 0.973 £ 0.019 0.961
fluctuations
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/. Increasingly complex models and data:
‘chi-square by eye"” simply not enough

2. 'If it's real, better data will show it":
but all the action is in the "discovery zone" around
3-4 sigma significance

3. Don't waste time explaining effects which are not
there (e.qg., reionization at z ~ 16)

4. Plan for the future: which is the best strategy?
(survey design & optimization)

5. In some cases, there will be no better data’
(cosmic variance)
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Bayesian inference chain o (D“l

1. Select a model
(parameters and range)

2. Predict observational signature
(as a function of parameters)

3. Compare with data

PARAMETER
a) derive parameters constraints INFERENCE

b) compute relative model probability MODEL
COMPARISON

4. Go back to 1
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Challenge #1
Using the right tool for each question
or
How to distinguish between

parameter constraint and model selection tasks
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e i e

o Astrophysics

Reionization (z, x,, history)
Cluster physics

Galaxy formation history

— e R —— A Ty T e Ry

o Matter-energy budget
QK’ QA! chml ‘Qwa’m! _QV, ‘Qb
neutrino sector (N, m, ¢

visr =+
dark energy sector w(z), ¢z, ...)
baryons ( ) Q)

dark matter sector (b, m,, o, )

strings, monopoles, ...

o EXxotica

Branes, extra dimensions
Alignements, Bianchi VI models

Quintessence, axions, ...
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Bayesian parameter estimation o (Dfd

Bayes Theorem 0

P(BIA)P(A) &

A|B) = >
P( | ) P(B) ; likelihood

A — 0 . parameters %

B — d : data N

D v

P(AFBHEM)7(6]M)
POIDZ =0 @ P

likelihood x prior
evidence

posterior =
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Irergio

The ro/eo prlors | o (P

Parameter inference: (relatively) unproblematic

Prior as “state of knowledge”

Different people will have different priors

Updated to posterior through the data & Bayes Theorem
Will eventually go away as data become better

-

Posterior Prior

& l Data
Likelihood
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Converging views

i

Priors

AL
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Likelihood (1 datum)

Posterior after 1 datum
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Posterior after 100 data
points :




Bayesian model comparison o (D”

e e . R

Goal: to compare the “performance” of models against the data

P, M) (0| M)
oo -

The model likelihood (“Bayesian evidence”)

P(dIM) = /QP(d|9,M)7r(9|M)d9

The posterior probability for the model
P(M|d) o« P(d|M)r(M)

The change in odds is given by the Bayes factor

P(Mopld) _|P(d|Mp) | m(Mg)
P(Mild) | P(d|Mq) [ m(My1)
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The Bayes factor

Bp1 =

TS 1 A 4 AY
P(d|My)

P(d|M;q)

Interpretation: Jeffreys’ scale for the strength of

evidence
In By, | |Odds |Probability |#o Interpretation
(2 models)
<1.0 < 37 < 0.750 .15 not worth the
mention
<Z2.5 <12:1 |0.923 1.77 weak
<50 < 150:7|0.993 2.70 moderate
>5.0 > 150:7 | > 0.993 > 2.70 | strong
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Model comparison takes Bayesian inference to the
model level - it complements parameter inference

Prior choice is inherent to model specification
Gives available model parameter space
Related to physical insight into the model

A model is a choice of parameters
and their ranges

M ={0,7(0| M)}
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Irergig

A” c?Ul'Omal'IC Occam S razor - _(Dxf_ord

The Bayes factor balances quality of fit vs extra model
complexity. It rewards highly predictive models

T =wo+ \o Model 0: ® = o,
5 Model 1: o # o, with nt(o)

For “informative” data

)\2
In Bo1 = 1
e 01 >

| = In(prior width / likelihood width) > 0
“‘wasted” volume of parameter space
amount by which our knowledge has increased
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Cosmological applications (Pror

Information gain (bits)
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Trotta 2007, MNRAS astro-ph/0504022
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I T

ACDM is in the lead

Trotta (2008)

B ————_—————e—

Competing model ANpar | InE Ref Data Outcome
Initial conditions
Isocurvature modes Baye S faCtO r. I n B < O faVO urs AC D M
CDM isccurvature +1 —T7.6 58 WhMAP3+, LSS Strong evidence for adiabaticity
+ arbitrary correlations +4 —1.0 46 WMAP1+4, LSS, SN Ia  Undecided
Neutrino entropy +1 [-2.5, —6.5F G0 WMAP3+, L3S Moderate to strong evidence for adiabaticity
+ arbitrary correlations +4 —1.0 46 WMAP1+4, L3S, SN [a  Undecided
Neutrino velocity +1 [-2.5, —6.5F 60 WMAP3+4, LSS Moderate to strong evidence for adiabaticity
+ arbitrary correlations +4 —1.0 46 WMAP1+, LSS, 5N [a Undecided
Primordial power spectrum
No tilt (ns = 1) -1 +0.4 47 WMMAP1+, LSS Undecided
[-1.1,-0.6)F 51 WMAP1+, LSS Undecided
—0.7 58 WMAP1+, LSS Undecided
—0.9 70 WMAP1+ Undecided
[-0.7, 174} [186] WMAP3+ ne = 1 weakly disfavoured
—2.0 185]  WMAP34, LSS ns = 1 weakly disfavoured
—2.6 70 WMAP3+ ns = 1 moderately disfavoured
—2.9 58 WMAP3+, LSS ns = 1 moderately disfavoured
< —3.9° 65 WMAP3+4, LSS Moderate evidence at hest against ny, 2 1
Running +1 [—0.6, 1.0F4 186] WMAP3+, LSS No evidence for running
< 0.2¢ 166]  WMAP34, LSS Running not required
Running of running +2 < 0.4° 166] WMAP34, LSS Not required
Large scales cut—off +2 [1.3,2.2]p [126] WDMAP34, LSS Weak support for a cut—off
Matter—energy content
Non-flat Universe +1 —38 70] WMaAP3+, HST Flat Universe moderately favoured
—3.4 ] WMAP3+, LSS, HST Flat Universe moderately favoured
Coupled neutrinos +1 —0.7 193] WMAP34, LS No evidence for non—SM neutrincs
Dark energy sector
wiz) = weg # —1 +1 [-1.3,-2.7F 187] SN Ia Weak to moderate support for A
—3.0 50] SN Ia Moderate support for A
—1.1 51] WMAPL+, LSS, 5N Ia Weak support for A
[-0.2,—1]# 188] 5N la, BAO, WMAP2  Undecided
[-1.6,—2.3)% 189] &N Ia, GRE Weak support for A
wiz) = wo + wyz +2 [-1.5, —3.4) 187] ENIa Weak to moderate support for A
—6.0 50 SN Ia Strong support for A
—18 188] 5N Ia, BAO, WMAP3Z  Weak support for A
wiz) = wo + wa(l — a) +2 —1.1 188] SN la, BAO, WMAP3Z  Weak support for A
[-1.2,—2.6]% [189] BN Ia, GRE Weak to moderate support for A
Reionization history
No reionization (7 = 0) -1 —2.6 70 WMAP3+, HST T # 0 moderately favoured
No reionization and no tilt  —2 —10.3 ITO WMAP3+, HST Strongly disfavoured
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Challenge #2
What is a "significant” effect?
or
How not to loose your sleep over

2-sigma "detections” (and why)



F 4 equentlst hypotheS/s teSt/ng - (Dfd

Irergig

.

Frequentist hypothesis testing (eg: likelihood ratlo) is not
what you think it is

A 2-sigma result does not wrongly reject the null hypothesis 5%
of the time: at least 29% of 2-sigma results are wrong!

Take an equal mixture of H,, H,

Simulate data, perform hypothesis testing for H,

Select results rejecting H, at 1-a CL

What fraction of those results did actually come from H, ("true
nulls”, should not have been rejected)?

p—value sigma  fraction of true nulls lower bound

0.05 1.96 0.51 0.29
0.01 2.58 0.20 0.11
0.001 3.29 0.024 0.018
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What went wrong? - (P

Bl e

For details see: Sellke, Bayarri & Berger, The American Statistician, 55, 1 (2001)

The fundamental mistake is to confuse

P(datalhypothesis) #= P(hypothesis|data)

p-value
Frequentist hypothesis testing Requires Bayes theorem!

1) Hypothesis (0): is a random person female?
2) Gather data: “pregnant = Y/N”
3) ...Don’t get confused!

P(d=Y|0 =F) =0.03
PO = F|ld =Y) > 0.03

Roberto Trotta - March 2008



A Baye5|an step IS reqmred to obtaln the probablllty of
the hypothesis ("model”)

When a meaningful prior is not easy to derive, we can
still employ an upper bound on the evidence in favour
of the new parameter:

wider prior
P >
I (bits) 21
2 C Model 0 favored
mE 0 _

E E Model 1 [ d E
_2 C e avore : ]
_I 1 1 1 I 1 | 1 1 I 1 | IEI I 1 1 1 1 1 | 1 I_l
—2 —1 0 1 2 3

Information gain I (base 10)
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Ba yeS/an calibrated p-values ORZ

Irergig
=iy SIS
<>- =

Sellke & Berger (1987), Gordon & Trotta (2007), MNRASLett, arxiv:0706.3014

p-value: © = p(t = tobs(x)|D

Io)

For a wide class of unimodal, symmetric priors
around o, one can prove that, for all priors

—1

epln g

B < B=
where

_ __ P(d|My)
B = B1o = 5aiy)

If the upper bound is small, no other choice of
prior will make the extra parameter significant.
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(Dxford
Gordon & Trotta (2007), MNRASLett  ™f e

> —F - R g~
T il
= "

-

Bayesian
evidence Interpretation
Significance bound (Jeffreys' scale)
p—value B InB sigma category
0.05 2.5 0.9 2.0
0.04 2.9 1.0 2.1 ‘weak’ at best
0.01 8.0 2.1 2.6
10.006 12 2.5 2.7  ‘moderate’ at best
0.003 21 3.0 3.0
0.001 53 4.0 3.3
0.0003 150 5.0 3.6 ‘strong’ at best
6 x 10—7 43000 11 5.0

Rule of thumb:

a n-sigma result should be interpreted as

a n-1 sigma result
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Hemispheric asymmetry in the CMB

v
(9]
V)]

WMAP1 ILC maps

Eriksen et al
(2004)
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Gordon (2007) xford
WMAP— mapS Gordon & Trotta (2007) (=D.,J,.i

Introduce dlpolar modulating function

AT () = AT (R)(1 + a)

0.14

Ay2 =9 for 3 extra parameters: is this significant?
Bayesian evidence upper bound of 9:1 (weak support)
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Challenge #3
Predicting the outcome of future observations
or

How to exploit the known unknowns



B lxroino

P r edlCl'IVé' a'ISl'rlbut/on_g | S (Dxf_ord

Q';O_ -..‘g.,‘

Goal: Probablllty distribution for the outcome of a
future observation averaging over current
parameters and model uncertainty

Multi-model inference: Bayesian generalization of

Fisher matrix forecast .
0: current experiment

e: future experiment
0: future max like value

P(0lo,e) = Y P(8lo,e, MD)P(MD]o)

= PO [ PO, e, MOPOO]0, MO

| @ J J
) 4 ' Y
current model  Fisher matrix present
posterior for fiducial posterior

point (weight)
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Trotta 2007, MNRAS, xford
astro-ph/0703063 E hysics.

e

Prediction of the value of n. from Planck data given current data
(WMAP3+others): Predictive Posterior Odds Distribution

'r Planck forecasts
! n.=1vs0.8<n,<1.2

:.E‘ 0.8 B
g | P(INB <-5) = 0.93
2 0.6 - oon T P(-5<InB<0) = 0.01
8 I ' ' P(InB>0) = 0.06
204
% «— Model uncertainty
£ P(n.=1|WMAP3+) = 0.05

o
o 4V
Lrll

0.85 0.9 0.95 1 1.06 1.1
Future mean, ng
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Prior dependence o (P

Prlor scaling of PPOD derived analytlcally from SDDR

Qualitatively the same €— | —> Prediction reversed
only if Ang > 4
1 TITTTI : 1 'I'T'I'III | 1 IIIII'I |
1 Strong evidence] for n, #1
C : \ E
| -
-

> i | i
e O1 i
— Ly \ )

S 2
'g 0.1 ﬁ: Evidence for HZ -
= -
Q. E .
0 , :
o . Positive eviden¢e for n, wl
® 0.01 : L---""" -
= o - -
o o . 1 - =
~ I _o==" -
™ o e -
: -
Iludun:l.u evidence for ny w1 i
-1 L l.l].].l.l 1 L1 I.l.l.lll L 1 |||||l :

0.1 1 10

Prior width on ng
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xford
Model (A, A_) | Required o for evidence level hysies.
moderate strong
(InB=3.0) (InB=5.0)
Phantom (0, 10) 0.4 5-1077
Fluid-like (2/3,0) 31077 3-107°
Small departures (0.01,0.01) | 4-10~* 5-107°
fluid-like DE -
-0.5 f =
O
©
¢ L
o 2 £
S
-2.5 CI:I>
3 R phantom DE
0
.
Trotta (2006) 2 ~1 0

astro-ph/0607496 Error on w, log, (o)
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Conclusions - meeting the challenge (P

Bayesian tools provide a framework for new
guestions & approaches:

o« Model building: phenomenologically work which is the "best”
model. Needs model insight (prior).

o Experiment design. what is the best strategy to discriminate
among models?

e Performance forecast. how well must we do to reach a certain
level of evidence?

o Science return optimization. use present-day knowledge to
optimize future searches
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