Bayes in the sky:
Statistical challenges in cosmology

Roberto Trotta

University of Oxford, Astrophysics St Anne's College

Lockyer Fellow of the Royal Astronomical Society

Contemporary Physics, Vol. 00, No. 00, Month-Month 2006, 1-41

(On every Arxiv near you next week)

Bayes in the sky:
 Bayesian inference and model selection in cosmology

Roberto Trotta*
Oxford University, Astrophysics Department
Denys Wilkinson Building, Keble Rd, Oxford, OX1 3RH, UK
(March 17, 2008)

The application of Bayesian methods in cosmology and astrophysics has flourished over the past decade, spurred by data sets of increasing size and complexity. In many respects, Bayesian methods have proven to be vastly superior to more traditional statistical tools, offering the advantage of higher efficiency and of a consistent conceptual basis for dealing with the problem of induction in the presence of uncertainty. This trend is likely to continue in the future, when the way we collect, manipulate and analyse observations and compare them with theoretical models will assume an even more central role in cosmology.

This review is an introduction to Bayesian methods in cosmology and astrophysics and recent results in the field. I first present Bayesian probability theory and its conceptual underpinnings, Bayes' Theorem and the role of priors. I discuss the problem of parameter inference and its general solution, along with numerical techniques such as Monte Carlo Markov Chain methods. I then review the theory and application of Bayesian model comparison, discussing the notions of Bayesian evidence and effective model complexity, and how to compute and interpret those quantities. Recent developments in cosmological parameter extraction and Bayesian cosmological model building are summarized, highlighting the challenges that lie ahead.

Keywords: Bayesian methods; model comparison; cosmology; parameter inference; data analysis; statistical methods.

The cosmological concordance 'model'

		1D 68\%	Best fit
	Cosmological parameters		
Baryon density	$\Omega_{b} h^{2} \times 10^{2}$	$2.23_{-0.06}^{+0.08}$	2.28
Cold dark matter density	$\Omega_{c} h^{2}$	0.106 ± 0.004	0.107
Angular size of sound horizon	Θ_{*}	1.043 ± 0.003	1.042
Optical depth to reionization	τ	$0.084_{-0.013}^{+0.014}$	0.087
Expansion rate	$H_{0}\left[\mathrm{Km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}\right]$	74.3 ± 2.1	73.1
	Power spectra parameters		
Amplitude of fluctuations	$\ln \left(P_{s}^{0} \times 10^{10}\right)$	$3.11_{-0.11}^{+0.06}$	3.15
Scale dependence of fluctuations	n_{0}	0.973 ± 0.019	0.961

1. Increasingly complex models and data: "chi-square by eye" simply not enough
2. "If it's real, better data will show it": but all the action is in the "discovery zone" around 3-4 sigma significance
3. Don't waste time explaining effects which are not there (e.g., reionization at $z \sim 16$)
4. Plan for the future: which is the best strategy? (survey design \& optimization)
5. In some cases, there will be no better data! (cosmic variance)
6. Select a model (parameters and range)
7. Predict observational signature (as a function of parameters)
8. Compare with data
a) derive parameters constraints

PARAMETER
INFERENCE
b) compute relative model probability
4. Go back to 1

Challenge \#1
 Using the right tool for each question or

How to distinguish between
parameter constraint and model selection tasks

- Primordial fluctuations
 A, $n_{s}, d n / d l n k$, features, ... 10×10 matrix M (isocurvature) isocurvature tilts, running, ...
 Planck scale (B, ω, ϕ, \ldots)
 Inflation (V, V', V', ...)
 Gravity waves $\left(r, n_{T}, \ldots\right)$

- Astrophysics

Reionization (τ, x_{e}, history)
Cluster physics
Galaxy formation history

- Matter-energy budget
$\Omega_{\kappa}, \Omega_{\Lambda}, \Omega_{c d m}, \Omega_{w d m}, \Omega_{v}, \Omega_{b}$ neutrino sector ($\left.N_{v}, m_{v}, c_{\text {vis }}^{2}, \ldots\right)$ dark energy sector $\left(w(z), c_{s}{ }^{2}, \ldots\right)$ baryons $\left(Y_{p}, \Omega_{b}\right)$ dark matter sector ($b, m_{\chi}, \sigma, \ldots$) strings, monopoles, ...

- Exotica

Branes, extra dimensions Alignements, Bianchi VII models Quintessence, axions, ...

Bayes Theorem

$\mathcal{P}(A \mid B)=\frac{\mathcal{P}(B \mid A) \mathcal{P}(A)}{\mathcal{P}(B)}$
$A \rightarrow \boldsymbol{\theta}$: parameters
$B \rightarrow \mathrm{~d}$: data

$\mathcal{P}(\boldsymbol{\theta} \mid \mathbf{d}), \stackrel{\mathcal{P}}{=} \stackrel{(\mathrm{d} P \mathcal{P}(\mathrm{~d} H \theta \theta) \mathcal{M}) \pi(\boldsymbol{\theta} \mid \mathcal{M})}{\mathcal{P}(\mathrm{d}) \mathcal{P}(\mathrm{d} \mid \mathcal{M})}$
posterior $=\frac{\text { likelihood } \times \text { prior }}{\text { evidence }}$

The role of priors

Parameter inference: (relatively) unproblematic
Prior as "state of knowledge"
Different people will have different priors
Updated to posterior through the data \& Bayes Theorem Will eventually go away as data become better

Converging views

Likelihood (1 datum)

Posterior after 1 datum

Posterior after 100 data points

Bayesian model comparison

Thysics.
Goal: to compare the "performance" of models against the data

$$
\mathcal{P}(\boldsymbol{\theta} \mid \mathbf{d}, \mathcal{M})=\frac{\mathcal{P}(\mathbf{d} \mid \boldsymbol{\theta}, \mathcal{M}) \pi(\boldsymbol{\theta} \mid \mathcal{M})}{\mathcal{P}(\mathbf{d} \mid \mathcal{M})}
$$

The model likelihood ("Bayesian evidence")

$$
\mathcal{P}(\mathbf{d} \mid \mathcal{M})=\int_{\Omega} \mathcal{P}(\mathbf{d} \mid \boldsymbol{\theta}, \mathcal{M}) \pi(\boldsymbol{\theta} \mid \mathcal{M}) \mathrm{d} \boldsymbol{\theta}
$$

The posterior probability for the model

$$
\mathcal{P}(\mathcal{M} \mid \mathbf{d}) \propto \mathcal{P}(\mathbf{d} \mid \mathcal{M}) \pi(\mathcal{M})
$$

The change in odds is given by the Bayes factor

$$
\frac{\mathcal{P}\left(\mathcal{M}_{0} \mid \mathbf{d}\right)}{\mathcal{P}\left(\mathcal{M}_{1} \mid \mathbf{d}\right)}=\frac{\mathcal{P}\left(\mathbf{d} \mid \mathcal{M}_{0}\right)}{\mathcal{P}\left(\mathbf{d} \mid \mathcal{M}_{1}\right)} \frac{\pi\left(\mathcal{M}_{0}\right)}{\pi\left(\mathcal{M}_{1}\right)}
$$

Jeffreys' scale for the strength of evidence

The Bayes factor

$$
B_{01}=\frac{\mathcal{P}\left(\mathbf{d} \mid \mathcal{M}_{0}\right)}{\mathcal{P}\left(\mathbf{d} \mid \mathcal{M}_{1}\right)}
$$

Interpretation: Jeffreys' scale for the strength of evidence

$\left\|\ln \mathrm{B}_{01}\right\|$	Odds	Probability $(2$ models $)$	$\# \sigma$	Interpretation
<1.0	$<3: 1$	<0.750	1.15	not worth the mention
<2.5	$<12: 1$	0.923	1.77	weak
<5.0	$<150: 1$	0.993	2.70	moderate
>5.0	$>150: 1$	>0.993	>2.70	strong

Model comparison takes Bayesian inference to the model level - it complements parameter inference

Prior choice is inherent to model specification
Gives available model parameter space Related to physical insight into the model

A model is a choice of parameters and their ranges

$$
\mathcal{M} \equiv\{\theta, \pi(\theta \mid \mathcal{M})\}
$$

An automatic Occam's razor

hysics.
The Bayes factor balances quality of fit vs extra model complexity. It rewards highly predictive models

Model 0: $\omega=\omega_{0}$
Model 1: $\omega \neq \omega_{0}$ with $\pi(\omega)$
For "informative" data
$\ln B_{01}=I-\frac{\lambda^{2}}{2}$
$\mathrm{I}=\ln$ (prior width / likelihood width) ≥ 0
= "wasted" volume of parameter space
= amount by which our knowledge has increased

Cosmological applications

Trotta 2007, MNRAS astro-ph/0504022
Trotta 2007, MNRAS Lett, astro-ph/0703063

Competing model	$\Delta N_{\text {par }}$	$\ln B$	Ref Data Outcome		
Initial conditions Isocurvature modes			Bayes factor: In $\mathrm{B}<0$ favours $\Lambda C D M$		
CDM isocurvature	+1	-7.6	[58]	WMAP3+, LSS	Strong evidence for adiabaticity
+ arbitrary correlations	+4	-1.0	[46]	WMAP1+, LSS, SN Ia	Undecided
Neutrino entropy	+1	$[-2.5,-6.5]^{p}$	[60]	WMAP3+, LSS	Moderate to strong evidence for adiabaticity
+ arbitrary correlations	+4	-1.0	[46]	WMAP1+, LSS, SN Ia	Undecided
Neutrino velocity	+1	$[-2.5,-6.5]^{p}$	[60]	WMAP3+, LSS	Moderate to strong evidence for adiabaticity
+ arbitrary correlations	+4	-1.0	[46]	WMAP1+, LSS, SN Ia	Undecided
Primordial power spectrum					
No tilt ($n_{s}=1$)	-1	+0.4	[47]	WMAP1+, LSS	Undecided
		$[-1.1,-0.6]^{p}$	[51]	WMAP1+, LSS	Undecided
		-0.7	[58]	WMAP1+, LSS	Undecided
		-0.9	[70]	WMAP1+	Undecided
		$[-0.7,-1.7]^{p, d}$	[186]	WMAP3+	$n_{s}=1$ weakly disfavoured
		-2.0	[185]	WMAP3+, LSS	$n_{s}=1$ weakly disfavoured
		-2.6	[70]	WMAP3+	$n_{s}=1$ moderately disfavoured
		-2.9	[58]	WMAP3+, LSS	$n_{s}=1$ moderately disfavoured
		$<-3.9^{c}$	[65]	WMAP3+, LSS	Moderate evidence at best against $n_{s} \neq 1$
Running	+1	$[-0.6,1.0]^{p, d}$	[186]	WMAP3+, LSS	No evidence for running
		$<0.2^{c}$	[166]	WMAP3+, LSS	Running not required
Running of running	$+2$	$<0.4^{c}$	[166]	WMAP3+, LSS	Not required
Large scales cut-off	+2	$[1.3,2.2]^{p, d}$	[186]	WMAP3+, LSS	Weak support for a cut-off
Matter-energy content					
Non-flat Universe	+1	$\begin{aligned} & -3.8 \\ & -3.4 \end{aligned}$			Flat Universe moderately favoured
Coupled neutrinos	+1	$\begin{aligned} & -3.4 \\ & -0.7 \end{aligned}$	$[58]$ $[193]$	WMAP3+, LSS, HST WMAP3+, LSS	Flat Universe moderately favoured No evidence for non-SM neutrinos
Dark energy sector					
$w(z)=w_{\text {eff }} \neq-1$	+1	$[-1.3,-2.7]^{p}$	[187]	SN Ia	Weak to moderate support for Λ
		-3.0	[50]	SN Ia	Moderate support for Λ
		-1.1	$[51]$	WMAP1+, LSS, SN Ia	Weak support for Λ
		$[-0.2,-1]^{p}$	[188]	SN Ia, BAO, WMAP3	Undecided
$w(z)=w_{0}+w_{1} z$		$[-1.6,-2.3]^{d}$	[189]	SN Ia, GRB	Weak support for Λ
	+2	$[-1.5,-3.4]^{p}$	[187]	SN Ia	Weak to moderate support for Λ
		-6.0	[50]	SN Ia	Strong support for Λ
		-1.8	[188]	SN Ia, BAO, WMAP3	Weak support for Λ
$w(z)=w_{0}+w_{a}(1-a)$	+2	$\begin{aligned} & -1.1 \\ & {[-1.2,-2.6]^{d}} \end{aligned}$	[188]	SN Ia, BAO, WMAP3	Weak support for Λ
		$[-1.2,-2.6]^{d}$	[189]	SN Ia, GRB	Weak to moderate support for Λ
Reionization history					
No reionization ($\tau=0$)	-1	-2.6	[70]	WMAP3+, HST	$\tau \neq 0$ moderately favoured
No reionization and no tilt	-2	-10.3	[70]	WMAP3+, HST	Strongly disfavoured

Challenge \#2

What is a "significant" effect?
or

How not to loose your sleep over
2-sigma "detections" (and why)

Frequentist hypothesis testing

Frequentist hypothesis testing (eg: likelihood ratio) is not what you think it is

A 2-sigma result does not wrongly reject the null hypothesis 5\% of the time: at least 29% of 2 -sigma results are wrong!

Take an equal mixture of $\mathrm{H}_{0}, \mathrm{H}_{1}$
Simulate data, perform hypothesis testing for H_{0}
Select results rejecting H_{0} at 1- $\alpha \mathrm{CL}$
What fraction of those results did actually come from H_{0} ("true nulls", should not have been rejected)?

$\mathrm{p}-$ value	sigma	fraction of true nulls	lower bound
0.05	1.96	0.51	0.29
0.01	2.58	0.20	0.11
0.001	3.29	0.024	0.018

For details see: Sellke, Bayarri \& Berger, The American Statistician, 55, 1 (2001)
The fundamental mistake is to confuse

\mathcal{P} (data|hypothesis) $\neq \mathcal{P}$ (hypothesis|data)

p-value
Frequentist hypothesis testing Requires Bayes theorem!

1) Hypothesis (θ): is a random person female?
2) Gather data: "pregnant $=Y / N$ "
3) ...Don't get confused!

$$
\begin{aligned}
& \mathcal{P}(\mathrm{d}=\mathrm{Y} \mid \boldsymbol{\theta}=\mathrm{F})=0.03 \\
& \mathcal{P}(\boldsymbol{\theta}=F \mid \mathrm{d}=\mathrm{Y}) \gg 0.03
\end{aligned}
$$

A Bayesian step is required to obtain the probability of the hypothesis ("model")

When a meaningful prior is not easy to derive, we can still employ an upper bound on the evidence in favour of the new parameter:

Sellke \& Berger (1987), Gordon \& Trotta (2007), MNRASLett, arxiv:0706.3014

$$
\text { p-value: } \quad \wp=p\left(t \geqslant t_{\text {obs }}(x) \mid M_{0}\right)
$$

For a wide class of unimodal, symmetric priors around ω_{0} one can prove that, for all priors
where

$$
\begin{aligned}
& B \leqslant \bar{B}=\frac{-1}{\mathrm{e} \wp \ln \wp} \\
& B=B_{10}=\frac{\mathcal{P}\left(\mathbf{d} \mid \mathcal{M}_{1}\right)}{\mathcal{P}\left(\mathbf{d} \mid \mathcal{M}_{0}\right)}
\end{aligned}
$$

If the upper bound is small, no other choice of prior will make the extra parameter significant.

$\left.$| | Bayesian
 evidence
 bound
 \bar{B} | | $\ln \bar{B}$ | sigma |
| :--- | :---: | :---: | :---: | :--- |
| p-value | | | | |\quad| Interpretation |
| :--- |
| (Jeffreys' scale) |
| category | \right\rvert\,

Hemispheric asymmetry in the CMB

WMAP1 ILC maps

Eriksen et al (2004)

Introduce dipolar modulating function

$$
\Delta T(\hat{\mathbf{n}})=\Delta T_{\mathrm{iso}}(\hat{\mathbf{n}})(1-A \hat{\mathbf{n}} \cdot \hat{\mathbf{d}})
$$

$\Delta \chi^{2}=9$ for 3 extra parameters: is this significant? Bayesian evidence upper bound of 9:1 (weak support)

Challenge \#3

Predicting the outcome of future observations

or

How to exploit the known unknowns

Goal: Probability distribution for the outcome of a future observation averaging over current parameters and model uncertainty Multi-model inference: Bayesian generalization of Fisher matrix forecast
o: current experiment
e: future experiment
θ : future max like value

$$
\begin{aligned}
P(\theta \mid o, e) & =\sum_{i} P\left(\theta \mid o, e, \mathcal{M}^{(i)}\right) P\left(\mathcal{M}^{(i)} \mid o\right) \\
& =\sum_{i} P \underbrace{P\left(\mathcal{M}^{(i)} \mid o\right)}_{\begin{array}{c}
\text { current model } \\
\text { posterior }
\end{array}} \int \underbrace{P\left(\theta \mid \hat{\theta}^{(i)}, e, \mathcal{M}^{(i)}\right)}_{\begin{array}{c}
\text { Fisher matrix } \\
\text { for fiducial } \\
\text { point }
\end{array}} \underbrace{P\left(\hat{\theta}^{(i)} \mid o, \mathcal{M}^{(i)}\right) \mathrm{d} \hat{\theta}^{(i)},}_{\begin{array}{c}
\text { present } \\
\text { posterior } \\
\text { (weight) }
\end{array}}
\end{aligned}
$$

Application: the PPOD technique

Prediction of the value of n_{s} from Planck data given current data (WMAP3+others): Predictive Posterior Odds Distribution

Prior scaling of PPOD derived analytically from SDDR

Model	$\left(\Delta_{+}, \Delta_{-}\right)$	Required σ for evidence level	
		moderate	strong
		$(\ln B=3.0)$	$(\ln B=5.0)$
Phantom	$(0,10)$	0.4	$5 \cdot 10^{-2}$
Fluid-like	$(2 / 3,0)$	$3 \cdot 10^{-2}$	$3 \cdot 10^{-3}$
Small departures	$(0.01,0.01)$	$4 \cdot 10^{-4}$	$5 \cdot 10^{-5}$

Conclusions - meeting the challenge

Bayesian tools provide a framework for new questions \& approaches:

- Model building: phenomenologically work which is the "best" model. Needs model insight (prior).
- Experiment design: what is the best strategy to discriminate among models?
- Performance forecast: how well must we do to reach a certain level of evidence?
- Science return optimization: use present-day knowledge to optimize future searches

