Cosmology and astrophysics of extra dimensions

P. Binétruy, APC Paris

Astrophysical tests of fundamental physics Porto, 27-29 March 2007

Why extra dimensions?

Often appear in the context of unifying gravitation with other interactions

Th. Kaluza and O. Klein geometric unification of electromagnetism and gravitation

Th. Kaluza (1921) - O. Klein (1926)

Einstein on Kaluza-Klein:

1919 to Kaluza: « At first glance I like your idea enormously » 1926 to Lorentz: « It appears that the union of gravitation and Maxwell's theory is achieved in a completely satisfactory way by the 5-dimensional theory. » 1931 to Ehrenfest: « It is anomalous to replace the 4-dimensional continuum by a 5-dimensional one and then subsequently to tie up artificially one of these dimensions to account for the fact that it does not manifest itself. »

(see A. Pais book)

A matter of scales (1): mífying gravitation and other gauge interactions

A matter of scales (1): mífying gravitation and other gauge interactions

 $M_W \ll m_P$

Two roads to unification

 $M_W \leftarrow m_P$

Large extra dimensions

For a theory in D=4+n dimensions with n dimensions compactified on a circle of size L :

$$G_N = G_f / L^n$$

 $G_f = M_f^{-(D-2)}$ gravitational constant of the fundamental D-dim. theory

$$m_{Pl}^{2} = M_{f}^{2+n} L^{n}$$

M_f fundamental scale of gravity in D dimensions

Explaining why gravity is so weak ($m_{Pl} \gg M_W$) might amount to explain why some dimensions are large ($M_f \sim M_W$).

At distance $d \gg L$, one recovers the standard law in $1/d^2$ for 3 infinite spatial dimensions and 1 or more microscopic dimension.

Hence test gravitational interaction at distances smaller than L.

$$\delta V = -G_N \frac{m_1 m_2}{r} \alpha e^{-r/\lambda}$$

Hoyle et al. hep-ph/0405262 However if L is macroscopic or mesoscopic, how do we reconcile this with the fact that no sign of extra dimensions has been observed in colliders?

Phenomenology of extra dimensions at high energy colliders: production of Kaluza-Klein modes

Solution: extra dimensions are only felt by gravitational interactions.

A matter of scale (2): dark energy

If dark energy is the main component in the present energy budget

$$H_0{}^2~\sim\rho_{DE}\,/\,m_P{}^2$$

$$\rho_{\rm DE} \sim H_0^2 \, m_{\rm P}^2 \sim (10^{-3} \, {\rm eV})^4$$

If this scale is a fundamental scale, then it is of « gravitational » nature

Note that :

•
$$\frac{\hbar c}{10^{-3} \,\mathrm{eV}} \sim 0.1 \,\mathrm{mm}$$

• low cut-off ($\Lambda \sim 10^{-3}$ eV) may be welcome in the context of the cosmological cst problem

Similar analysis if expansion acceleration is explained by modification of gravity.

If dark energy is a scalar field ϕ (quintessence), then

$$m_{\phi} \sim H_0 \sim 10^{-33} \text{ eV}$$

Exchange of φ leads to new long range force (range ~ H₀ ~ 10²⁶m)

φ has couplings ofsubgravitational sizeto ordinary matter

Cosmologícal evolution on the brane

$$p, \rho$$
 \wedge_B tension σ

5-dimensional Einstein equation + Israel junction condition on the brane → Generalized Friedmann equation on the brane:

$$\begin{split} H^{2} &= \underline{1} \quad \Lambda_{B} + \underline{1} \quad \sigma^{2} + \underline{1} \quad \sigma\rho + \underline{1} \quad \rho^{2} + \underline{C} \quad \underline{k} \\ 6M_{5}^{3} \quad 36M_{5}^{6} \quad 18M_{5}^{6} \quad 36M_{5}^{6} \quad a^{4} \quad a_{0}^{2} \end{split}$$

$$\begin{array}{l} P.B., Deffayet, Ellwanger, Langlois; Csaki, Grae \\ Kolda, Terning; Cline, Grojean, Servant \end{aligned}$$

To be compared with the standard Friedmann equation: $H^{2} = \underline{1} \quad \lambda + \underline{1} \quad \rho - \underline{k}$ $3 \qquad 3M_{P}^{2} \qquad a^{2}$

W1

When should one recover the 4-dimensional picture?

When the physics on the brane is 4-dimensional, i.e.

• if the extra dimension is compact and its radius is stabilized e.g.Randall-Sundrum I set up

• if the extra dimension is noncompact but the 4-dimensional graviton is localized Rubakov,Shaposhnikov,Akama,Gogberashvili,Randall, Sundrum e.g. in Randall-Sundrum (RSII) case, the extra dimension is warped

$$a(y) = e^{-|y|/\ell}, \ \ell^2 = \frac{6M_5^3}{|\Lambda_B|} \ AdS_5$$
 curvature radius

Minkowski (M_4) constraint: $\frac{1}{3}\lambda = \frac{1}{6M_5^3}\Lambda_B + \frac{1}{36M_5^6}\sigma^2 = 0$

Planck scale :
$$M_P^2=M_5^3\int_{-\infty}^{+\infty}e^{-2|y|/\ell}dy=M_5^3\ell$$

Agrees with the cosmological evaluation:

$$M_P^2 = \frac{6M_5^6}{\sigma} = M_5^3 \left(\frac{6M_5^3}{|\Lambda_B|}\right)^{1/2} = M_5^3 \ell$$

• The importance of the non-conventional ρ^2 term increases as one goes back in time \rightarrow possible role in the early universe

inflation models

 The determination of the Planck scale using the effective low energy and the Friedmann equation may differ!

e.g. dS_4 or AdS_4 branes

for a recent discussion, see Mukohyama and Kofman

 the system of 4-dimensional effective gravitational theory is not closed because of bulk gravitational waves and bulk scalars

Moduli fields

In an AdS_5 background, choose static coordinates : the cosmological evolution on the brane is purely due to the motion in the bulk

 $\Re(t)$ is the cosmic scale factor on the brane : the corresponding modulus field provides the semi-classical notion of time on the brane.

In the set up with two branes, the interbrane distance is described by a scalar field or radion.

Brane inflation

Brane inflation : Brane-antibrane system

Brane gravitational potential \propto r ⁻⁴

Take the radion as the inflaton field : $\mathcal{L} = \frac{1}{2}\dot{\phi}^2 + 2(\tau_3 - \frac{c}{\phi^4})$ $c = 4G_{10}\tau_3^4/\pi^2$

But, as $\phi \rightarrow 0$, the brane-antibrane system becomes unstable to annihilation into closed strings.

$$m_{\rm T}^2 = M_{\rm S}^2 \ (\ \frac{{\rm r}^2 \ M_{\rm S}^2}{2 \ \pi^2} \ 1)$$

Similar to hybrid inflation

But $\eta = M_S^{12} V_6 / \phi^6 \ll 1$ for $\phi / M_S \gg V_6^{1/6} M_S$

i.e. for $r \gg size$ of the compact dimension

Go to warped compactification :

at r = 0

Turn on fluxes

Turn on fluxes

Giddings, Kachru, Polchinski KKLMMT BUT the Kahler modulus ρ which fixes the radius of the Calabi-Yau model has not been stabilized.

Kahler potential K= - 3 ln (ρ + $\bar{\rho}$ - $|\phi|^2$)

Scalar potential $V \sim e^K \dots \implies m_{\phi}^2 \sim H^2$

Then famous η problem : $\eta = V''/V = m_{\phi}^2 / 3H^2 = 2/3$

How to get out of it?

• shift symmetry: $\phi \rightarrow \phi + c$ Firouzjahi, Tye

• D3-D7 brane inflation Dasgupta, Herdeiro, Hirano, Kallosh

D3-D7 system leads to D-term inflatin which avoids the η problem: no e^K factor PB, G. Dvali

$$K = -3 \log (\rho + \rho) - (\phi - \overline{\phi})^2/2$$

 $s = Re \phi$ distance between D3 and D7 brane

Shift symmetry: $s \rightarrow s + c$

Add hypermultiplet of fields ϕ_{\pm}

Modífication of gravity

DGP model

$$S = \int d^{5}x \, \sqrt{-g} M_{5}^{3} \frac{1}{2} R^{(5)} + \int_{\text{brane}} d^{4}x \, \sqrt{-h} M_{\text{Pl}}^{2} \frac{1}{2} R^{(4)} + \int_{\text{brane}} d^{4}x \, \sqrt{-h} \mathcal{L}_{m} + \mathcal{S}_{GH}$$

For distances $r > r_c$, one recovers the 5-dim. $1/r^3$ behavior:

$$r_c = \frac{M_{\rm Pl}^2}{2M_5^3}$$

gravity "leakage" into the extra dimension

For all these models, the critical distance must be cosmological. Cosmology of induced gravity model Deffayet; Deffayet, Dvali, Gabadadze

$$H^{2} = \left(\sqrt{\frac{\rho}{3M_{\rm Pl}^{2}} + \frac{1}{4r_{c}^{2}}} + \frac{1}{2r_{c}}\right)^{2} - \frac{k}{a^{2}}$$

Hence acceleration at late time, without a need for a cosmological constant!

More precisely, taking flat space, this may be written

$$H^2 - rac{\epsilon}{r_c} H = rac{
ho}{3M_{
m Pl}^2} , \epsilon = \pm 1 .$$

As long as $H^{-1} \ll r_c$, we have the standard Friedmann equation

$$H^2 = \frac{\rho}{3M_{\rm Pl}^2} \; .$$

But when H^{-1} becomes larger than r_c ,

• $\epsilon = +1$

Self-accelerating branch

the final regime is $H \to H_{\infty} = 1/r_c$.

• $\epsilon = -1$

the final regime is

$$H^2 = \rho^2 \frac{r_c^2}{9M_{\rm Pl}^4} = \frac{\rho^2}{36M_5^6}$$

Comparison with observational data

Write the Friedmann equation

$$H(z) = H_0 \left[\sqrt{\Omega_{r_e}^{(0)}} + \sqrt{\Omega_{r_e}^{(0)}} + \Omega_m^{(0)}(1+z)^3 \right]$$

with $\Omega_{r_c}^{(0)} = 1/4r_c^2 H_0^2$.

If we set z = 0, we have the normalisation condition:

$$\Omega_{r_c}^{(0)} = (1 - \Omega_m^{(0)})^2)/4$$
.

DGP predicts nonstandard gravity at much shorter scales

Deffayet, Dvali, Gabadadze, Vainshtein

Extra scalar graviton polarization changes the Newtonian potential:

For a source of mass M (gravitational radius $r_g = 2M/M_{Pl}^2$), gravity is modified at distances

$$R > r_* = (r_g r_c^2)^{1/3} = (2MM_{Pl}^2/M_5^3)^{1/3}$$

But self-accelrating branch of DGP is plagued with problems (see e.g. R. Gregory 0801.1603 for a recent discussion)

- ghosts present in perturbation theory
- pressure catastrophies and energy unbounded from below
- destabilisation of 5D vacuum by unsuppressed tunneling processes

Conclusions

Not covered: cyclic universe, BH production at colliders...

Interesting numerical coincidence in favor of large extra dimensions: should be probed in the coming decade

At this stage, more than predictions, the braneworld idea provides a framework for new cosmological models.

Many arenas where such models could show up: cosmological observations, collider searches, tests of gravity...