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DE Models
Dark energy models
e w = —1: the cosmological constant;
e w = const # —1: the cosmic strings, domain walls, etc.:

e w # const: quintessence scalar field, chaplygin gas, k-essence,
Dirac-Born-Infeld (DBI) action, braneworlds, etc.;

e w < —1: phantom models.

The most challenging case if w < —1.

In this case the weak energy condition (p > 0,p+ p > 0) is violated.
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Phenomenological DE Models with w < —1

e Fluid with w < —1 (the Universe at finite time ends in the
singularity, “Big Rip”, Caldwell, Kamionkowski, Weinberg, PRL2003)

e Ghost scalar field (Phantom) — no “Big Rip”, but instability
e Lorentz-violating background

e Modifications of GR, in particular Brane Cosmology
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Phantom as an Effective Theory

A possible way to overcome instability problem for models

with w < —1 is to get a phantom model as an effective

one, arising from a more fundamental theory without a negative
kinetic term.

Model is based on String Field Theoretic formulation
of a fermionic NSR string.

We study nonlocal dynamics of string tachyon
in the cosmological Friedman metric.




Level-truncated Action for Fermionic String

Witten;
I. Aref’eva, P. Medvedev, Zubarev;

Covariant String Field Theory
Sen, Berkovich, Zwiebach;

|_evel truncation

S= [ﬂﬁﬂ" !‘W ( ©o@,/M) o+ ;@ — V(DM ) —A’—T)]

S = [d::r [— 0, 0(x)¢(x) + 1qz.‘»ﬂ(:r) — %@4(:}:) —A]

interacting term contains ®(z) = (e"™¢)(z), m = ¢,

o0
H = Z Y metric [ = _dfz + ?2

n=0

The operator €™ contains infinite number of derivatives (nonlocal).
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Spatially-Homogeneous Configurations

In the case of spatially-homogeneous configurations ¢(x) = ¢(t) action takes the form

:2 1 1 2 1 d
Sl¢l = [ dt !%qu(t)P +50(t)? — 0Nt — A, e=e""0, m=_, 0

) 4 8’ dt’

Equation of motion takes the form

d? >
(—HZQF + 1)(e® D)(1) = ®(t)*, a=2m

2 . .
The operator ¢*?” for a > 0 could be represented in integral form

ad? 1 _(t=r)?
@) = —— [ T p(r)ir
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Stress Tensor and Energy Conservation
Definition from the theory of general relativity

T 2 4S8
of \/_—g é‘gaﬁ
Including metric in the action
, 1 5 K2 , L 4
Slo] = | dav=g|50°(z) + S-o(2)ag(z) — ;@ (z) — A

where covariant D’Alamber operator has the form

]‘ 1114
s = =0/ =00 00

To perform variation of the tiled fields we use the following identity

et Looi 04 [
+ = [ dpe"A(T)e“_p}A, A is some operator.
09°F(x)  Jo g% (x)

¥
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Lemma. For any function 1:(t), which has infinitely many derivatives and has Fourier
transform, and for any a > 0 the following equality holds

2 1 o fer 2
e“;?w(t):\/mf E_L‘iﬂ—]w(T)d’T

Proof. Let

—ﬁk-‘, T
v \/ﬁf vk
then p . -
dm(t) = ¢%f"W%%®%=

1 > 2 1
_ \/ﬁ/ B—ak} B—i.fm‘, \/Qﬂf szi’b( )d’?—dk _
mwJ_ _

T i(r—1)2 1 X _r-p?
f W(r d’T\/ e 4 — f e~ = (7)dr
Vadra J - s

this proofs the statement.
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Stress Tensor

N. Moeller, B. Zwiebach, JHEP, 10 (2002) 034
H. Yang, JHEP 11 (2002) 007
I. Aref’eva, L.J., A. Koshelev, JHEP, 09 (2003) 012

The stress tensor takes the form

1 K2 1
Taﬁ(ﬂj) = —Gap (5@2 — ? ‘uq_z')ﬂ"‘qi} - /1‘1]'4 - A) — ﬁzzﬂaq_bﬂ;;qb

1
—0ap m[ dp [(Bmngq,S)(Dge—mngq,) 4 (aﬁempﬂgq,?,)(&ue—mpmgq))]
J0

1
+2m [ dp (0 €™ D%)(Dge ™0 D),
Jo

Note that here and below integration over p understand as limit of the following regular-

1zation
1—¢o

[ aotio) = tim, 1 [ dor(o)

€] —?—1—0 {_z—i—f—ﬂ Jeq
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The Energy and Pressure

Energy and Pressure are defined as E(t) = T%and P(t) = —T! correspondingly

where

L1

E(t) = EE + Ep + A+ Eﬂip Enon—toc = Ly, + Entg

K2 1 1

= — 2 B = 2+ Z(p)?

k 5 (D) 2'335 +4( )
1

B, = m [ dp(e ™7 B3) (" 32
1]

1
B, = —m / dp(e™ ™7 9% (¢P° 9d)
0

P(t) = Ex(t) — Ep(t) = A = Eu, () + Ep,(1)

P(t) = —E(t) + 2Ex(t) + 2E,,(t)
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XEnergy Conservation

Theorem
dE(t) 0
7
where
2 1 ! 20V = 2
B() = (00 = 56" + V(@) + At [ dple 00 T (e om),
2 2 0 JP
where Kk, m— are positive constants,
nd &~ o
(—K*— +1)p = e ™" =

dt? oD
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Proof
Let us prove the energy conservation directly

dE(t) _

— k2(09) P ¢ — pOg + 6‘1>+mf dp( _mﬂaza_v)y(empﬂza@).

0P

Now using the identity

—m f dp(e‘m’“azw)?(e_m“‘”azé) = pe g,

the equation of motion, and the definition of the field ® we get

dE()) 5V —md? .
—— = K (00)F ¢ — $00 + —8<I> — g€ " 00 =
= 0¢ EHQGQ — 1o+ e—mﬁz% 0.

W

E.OM
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More realistic case including gravity

In this section we would like to consider more realistic case including gravity

2 2
m K 1 1
Sszmﬁg-iﬂ+—@Q@+—&——f—A :
. 2 2 2 4
12 2
where ¢ is a dimensionless scalar field, ® = ¢™ ¢ and m% = 94%;? = %(%)6

As a particular metric we will consider a FRW one
2 _ 2, 2 2 2 2
ds® = —dt* + a”(t)(dx] + dz; + dz3),

for which the Beltrami-Laplace operator for spatially-homogeneous configurations takes the
form O, = —0* — 3H(t)0 = —Df;.
Equation of motion for the scalar field ® takes the form

(€0, + e ™o = V(D).

The Friedmann equations have the following form

1
2
p

3H? = &

m

3H? +2H= — — P.

1
2
ms,
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Numerical Scheme for Solution Construction

For numerical calculations we operate with scalar field equation of motion and the dif-

ference of equations

D2 : 1
(—&*D¥ + 1) Pad = 0, H = —5— (P+€).
P

The outline of the numerical scheme is the following

e For equations we introduce lattice in ¢ variable and then solve resulting system of
nonlinear equations using iterative relaxation solver using discrete L, norm to control

error tolerance.

. . . . . . . . . . Ty 2
e The nontrivial thing from computational point of view is efficient evaluation of ¢2*/Pud
for p € [0,2]. This operator could be interpreted in terms of initial value problem for
the following diffusion equation with boundary conditions

Qop(t.p) = Folt.p) + 3H(t)Fo(t, p),

fp([):t) = @(f) fp(ﬂ,:l:OG) = @'(:{:OO)

. . . . T2
Once solution of this equation is constructed we have e2*/Pud(t) = p(p.t).
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Numerical Scheme for Solution Construction - continuation

e To solve it we used second order Crank-Nicholson scheme which is based on approxi-
mation

),

where D§; is a Dj; operator on the t-lattice (it thus has a finite norm) and A, is a
step size along p variable. Derivatives in ¢ variable were approximated using 4th order
finite differences on uniform lattice (symmetric scheme).

= o el = -1 -
ezmp‘DHW — (1 + kApr{) (1 — kﬁpﬂﬁ) Y+ 0(&ﬁ|mi‘

e In order to exclude possible artifacts of this specific numerical scheme we tried Chebyshev-
pseudospectral method which is known to have impressive exponential convergence.
This scheme is known to have very different properties compared to finite difference
scheme described above, but it produced the same results up to the approximation
error which gives us confidence in the existence of the rolling solution reported in this
work.
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Numerical Solution for Friedman
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At the same time there have been a number of attempts to realize description of the
early Universe via nonlocal cosmological models.,

One example is p-adic inflation model Barnaby, Biswas, Cline 2006 which is rep-
resented by nonlocal p-adic string theory coupled to gravity. For this model, a rolling
inflationary solution was constructed and the interesting features were discussed and
compared with cosmic microwave background (CMB) observations. The possibility of
obtaining large nongaussian signatures in the CMB has also been considered in a general
class of single field nonlocal hill-top inflation models Barnaby, Cline 2007.

Another example is investigation of the inflation near a maximum of the nonlocal
potential when non-local derivative operators are included in the inflaton Lagrangian. It
was found that higher-order derivative operators in the inflaton Lagrangian can support
a prolonged phase of slow-roll inflation near a maximum of the potential Lidsey, 2007.
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Cosmology effaces differences between diff. stringy approaches

Witten’s Cubic Open String Field Theory

A. Sen, JHEP, 04 (2002) 048
G.W. Gibbons, Phys. Lett. B 537 (2002) 1,
Class. Quant. Grav. 20 (2003) S321

1 1 1
S=—-= /( Dx Qpd + —P* D x D)
J 2d 2

E. Witten, Nucl. Phys. B 268 (1986) 253

V.A. Kostelecky and S.Samuel, Phys. Lett. B 207 (1988) 169
V.A. Kostelecky and S.Samuel, Phys. Lett. B 207 (1988) 169
N. Moeller, A. Sen, B. Zwiebach, JHEP, 08 (2000) 039

1 1 A,
S=— [d”z:[ O/ 0,0" + 1)p — (e p)® — A

l. Aref’eva, L.J., JHEP 2005

G. Calcagni, JHEP 05 (2006) 012

N. Barnaby, T. Biswas, J.M. Cline, JHEP, 2007

J.E. Lidsey, Phys. Rev.D, 2007

L.J., Phys. Rev.D, 2007

N. Barnaby, J.M. Cline, JCAP, 2007; arXiv: 0802.3218
D. Mulryne
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N. Moeller, B. Zwiebach, JHEP, 10 (2002) 034

H. Yang, JHEP 11 (2002) 007
I. Arefeva, L.J., A. Koshelev, JHEP, 09 (2003) 012

Model / Minkowski case G. Calcagni, JHEP 05 (2006) 012
V. Forini, G.Grignani, G. Nardelli, JHEP 03 (2005) 079

m2 1 1 A
N T e I ST C BAY C BV
S [ ::."(QR—{—QQD g@-i-qu 5 )

99/2

where A = —t-— ~ 2.19, A" = (6A%)7!, ¢ is a dimensionless scalar field,
M -
kag@ - lnA ~ (.26, m‘; = 9.4@ and O, = ﬁﬂﬂ\/—gg‘wﬁy.

Equation of motion
(O + e 2d = \?

For spatially homogeneous configurations [, = — P,
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Energy
The Energy is defined as E(t) = T and for our model have the form

E=E+E+ N+ En+ En

]. Y ]- 2 )‘ 3
— — . —_ —— —(ﬁ"
& 2(8@) . & 5¢ + 3

1
Ey =k [ dp (7°A@?) (—Oe *77 @)
J0

1
Eop = —k [ dp (ﬂekﬂu)\tllz) (ﬂe_k‘”[‘ql) .
Jo

To avoid calculation of e*°™

term which is much harder to compute than ¢ **7 (k£ > 0)
as computation of the former results in an ill-posed problem we will use the following
representation for nonlocal energy terms FE,;, and E,;, on the equation of motion for the

scalar field .
En = k/ dp ((D + 1)6—{2—p}kuq}) (—De_km(]}) :
Jo

1
Eniz = —k [ dp (A(0 + 1) ®~P*2d) (9e ¥ d) .
<0
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Does exist the rolling tachyon solution in this case?

E(p=0)=A
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Coupling to the gravity / FRW case

I. Aref’eva, L.J., JHEP 2005

G. Calcagni, JHEP 05 (2006) 012

N. Barnaby, T. Biswas, J.M. Cline, JHEP, 2007
J.E. Lidsey, Phys. Rev.D, 2007

N. Barnaby, J.M. Cline, JCAP, 2007

1 1 A
S = [d‘*:r«./ ( PR+ 2@[ng9+ 2@ — gtif‘ A’)
Scalar field and Friedmann equations:
(— D% + 1)62@?@ = A0, DY =+ 3H(t)0,,
: 1
m m2
E=E+E,+T+ N+ Eu + Eup,
N 2 1 A
P = 8,!;; gp T —-A 811,.-!1 + 811,!2: 8 f ( (9) f,’p = — 5@2 + g‘i’g.

8’.‘1.‘:1 =k

1
[ dp ((—:D’;’l + 1)&2—“”%@) (Dﬁe’w‘ﬂﬁcﬁ) ,
S0

bz = —k /0 "o (a(—Dﬁ + 1)€(z-p:aw%1<1>) (aekw%lqa) .
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Do we have the rolling tachyon solution in this case?
(—D% + 1) Pid = \®?*, D% = &7 + 3H(1)d,

AJ‘
H(p=0) = \/3m§ Ph — _{(I;k_jqj —3HOD
E(p=0)=A 182 1 Ad3
(¢ =0) V@) = 2&‘11)_2;;@
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Numerical solutions
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Dynamics of the scalar field for different parameters of the system
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Numerical solutions for different parameters of the system
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Conclusions

e We have studied the properties of nonlocal cosmological models driven by String
Field Theory in the Friedmann space-time

e We obtain classical solutions of the corresponding Friedmann equations which can
be considered as a first approximation to the quantum solutions and might be useful
for the study of ways to avoid the cosmological singularity problem.

e Model assumptions

-level truncation approximation
-direct generalization of the tachyon nonlocal action to Friedmann space-time

e [t would be interesting to try to find an analog of these solutions to a full SFT

theory (without level truncation).

e Development of the perturbation theory on the models with infinitely many derivatives



Thank you for the attention!




