Inflation within MSSM

Kari Enqvist University of Helsinki and Helsinki Institute of Physics

Inflaton is a great idea ...but many open questions

particle theory origins?
 -usually assumed to be gauge singlet
 (radiative corrections can spoil flatness)
 - Not motivated by theory: no known gauge singlets
coupling to baryons?

- reheating/origin of matter

If singlet, no testable consequences in the lab - how can ever make sure inflation is correct? Allahverdi, KE, Garcia-Bellido, Mazumdar; Allahverdi, KE, Garcia-Bellido, Jokinen, Mazumdar Inflation from MSSM

- MSSM has scalars: sleptons, squarks, higgses
- low scale \rightarrow low *H*; field values $<< M_P$
- perturbations ~ $H/\epsilon \rightarrow$ need very flat potential
- but then: radiative corrections can spoil everything *need extra protection*

susy, gauge symmetry → directions in MSSM scalar field space with V=0 in the limit of exact susy

Superpotential: $\mathbf{F} = \lambda \mathbf{L} \mathbf{H} \mathbf{e} + \lambda^2 \mathbf{Q} \mathbf{H} \mathbf{u} + \dots$

unbroken susy:

 $\partial \mathbf{F}$

$$\mathbf{V} = \mathbf{\Sigma} |\mathbf{F}_{\mathbf{i}}|^2 + \frac{1}{2}\mathbf{D}^2$$

$$\mathbf{F}_{i} = \frac{1}{\partial \phi_{i}} = \mathbf{0}$$

$$\mathbf{F} - \mathbf{flat}$$

$$\mathbf{D}^{a} = \phi^{\dagger}_{i} \mathbf{T}^{a} \phi_{i} = \mathbf{0}$$

$$\mathbf{D} - \mathbf{flat}$$

global U(1): φ_i ► φ_ie^{iθ} flat directions typically carry B and/or L

2
(curved)
trajectory

$$d=49$$

 $\varphi = \Sigma a_i f(\varphi_i)$
squarks, sleptons

MSSM flat directions all classified:

 $H_{u}H_{d}$ LH u^cd^cd^c LLe^c QQQL u^cu^cd^ce^c QQu^cu^ce^c u^cu^cu^ce^ce^c QQLLd^cd^c **QQQQLLd**^c QLu^cQQd^cd^c B=L=0 purely leptonic purely baryonic

Dine, Randall, Thomas

etc

review: P.Rep. 380 (2003) 99

generation (+perm)

FLAT DIRECTIONS AND GRAVITY

- Inflation means gravity
- Gravity is not renormalizable
- MSSM + gravity is a non-renormalizable effective theory valid at scales $<< M_{\rm P}$
- \rightarrow must include all the non-renormalizable superpotential terms
- for each flat direction, the first non-renormalizable term allowed by gauge and supersymmetry has a definite dimension *n*
- in addition, supersymmetry is broken softly in the Nature

flat directions "lifted": $V \neq 0$

Lifting flat directionssoft susy breaking
$$V = \frac{1}{2} m^2 |\phi|^2$$
non-renormalizable terms $F = \phi^n / M^{n-3}, \psi \phi^{n-1} / M^{n-3}$ $V = |F_k|^2 = \phi^{2(n-1)} / M^{2(n-3)}$ soft breaking A-terms $V = \frac{1}{2} \operatorname{Re} AF / M^{(n-3)}$

All flat directions lifted by operators dim ≤ 9

example: udd, lifted by dim=6 operators

$$w \supset \frac{1}{M_P^3} (uud)(uud)$$

$$\phi = \phi \, e^{i\theta}$$

$$V = \frac{1}{2}m_{\phi}^{2}\phi^{2} + A\cos(n\theta + \theta_{A})\frac{\lambda_{n}\phi^{n}}{nM_{P}^{n-3}} + \lambda_{n}^{2}\frac{\phi^{2(n-1)}}{M_{P}^{2(n-3)}}$$

A-term \rightarrow n-fold set of minima when $\cos = -1$ provided

$$A^2 \ge 8(n-1)m_{\phi}^2$$

(but not too large A: otherwise true minimum breaking colour)

at the saddle point

$$\phi_0 = \left(\frac{m_{\phi}M_P^{n-3}}{\lambda_n\sqrt{2n-2}}\right)^{1/(n-2)}$$
$$H = \frac{n-2}{\sqrt{6n(n-1)}} \frac{m_{\phi}\phi_0}{M_P}$$

saddle point eternal inflation regime

2-point correlator spreads in time

classical slow roll takes over when

$$(\phi_0 - \phi) = \left(\frac{m_{\phi}\phi_0^2}{M_P^3}\right)^{1/2} \phi_0$$

business as usual

the model:

$$L_i L_j e_k$$
 or $u d_i d_j$ flat direction

(others: wrong amplitude)

$$\begin{split} m_{\phi} &\approx O(1) \ TeV; n = 6; A = \sqrt{40} m_{\phi}; \lambda \approx O(1) \\ H_{\text{inf}} &\approx O(1) \ GeV; \phi_0 \approx O(10^{14}) \ GeV \end{split}$$

slow roll \rightarrow saddle point condition must hold very precisely

$$(A/m_{\phi})^2 = 40(1+O(10^{-16}))$$

of total e-folds

of observationally relevant e-folds (immeadiate decay)

amplitude of perturbations

$$N = \int H_{inf} d\phi / \dot{\phi} \approx 10^{3}$$
$$N_{COBE} \approx 47$$
$$\delta_{H} = \frac{1}{5\pi} \frac{H^{2}}{\dot{\phi}} \approx 1.9 \times 10^{-5}$$

slow roll parameters

$$\varepsilon \approx 1/N_{cobe}^4; \eta \approx -2/N_{cobe}$$

spectral tilt

$$n_{s} = 1 - 4 / N_{COBE} \approx 0.92$$
$$\frac{dn_{s}}{d \ln k} = -4 / N_{COBE} \approx -0.002$$

no gravitational waves

REHEATING

after inflation oscillation frequency ~ m_{ϕ} ~ 10^{3} H expansion negligible

 $\phi \rightarrow$ gauge bosons, gauginos \rightarrow squarks/quarks within 1 Hubble time

details remains to be worked out

Measuring inflaton parameters at colliders

CMB amplitude
$$m_{\phi}(\phi_0) = 340 \, GeV \lambda^{-1}$$

run down to TeV:

C	тт
tor	I P
IUI	

ξ (gaugino/flat)	m _{\oplu} (TeV)		
2	$(1.9)^{\frac{1}{2}}$ 340 GeV		
1	$(1.3)^{\frac{1}{2}}$ 340 GeV		
0.5	$(1.1)^{\frac{1}{2}}$ 340 GeV		

LHC slepton mass limits can rule the model out!

WHY SADDLE POINT?

What fixes A/m?

In MSSM just parameters put in by hand

must go beyond MSSM

KE,Mether, Nurmi Nurmi

SUPERGRAVITY CHANGES THINGS

expect corrections

$$\delta V_{SUGRA} = H^2 M^2 \left(\frac{\phi}{M}\right)^2$$

$$H \approx \frac{m_{\phi} \phi_0}{M} \Longrightarrow \delta V_{SUGRA} \ll V_{MSSM}$$

small, but the saddle point is finetuned:

$$\delta \left(\frac{m}{A}\right)^2 \approx \frac{\phi_0^2}{M^2} \approx 10^{-10} >> 10^{-16}$$

depends on the Kähler potential

D=0

Require:

$$A = \sqrt{40}m_{\phi}$$

not accidental but holds for **all values** of hidden sector fields

$$\phi = \phi_0$$

Kähler potential, moduli fields

Let us assume

does there exist K such that $A = \sqrt{40m_{\phi}}$ identically?

to lowest order

$$V = (V_0 + V_2 \phi^2 + V_6 \phi^6 + V_{10} \phi^{10})(1 + O(\phi^2))$$

$$V_2 = e^{\bar{K}} \left| \hat{W} \right|^2 \hat{Z}_2 (\hat{K}^m \hat{K}_m + \hat{K}^m \hat{K}^{\bar{n}} (\hat{Z}_2^{-2} \hat{Z}_{2m} \hat{Z}_{2\bar{n}} - \hat{Z}_2^{-1} \hat{Z}_{2m\bar{n}}) - 2)$$
etc. saddle point condition
$$\left| \hat{K}^m \hat{K}_m - 6 \hat{Z}_2^{-1} \hat{K}^m \hat{Z}_{2m} + 3 \right|^2$$

$$= 20 (\hat{K}^m \hat{K}_m + \hat{K}^m \hat{K}^{\bar{n}} (\hat{Z}_2^{-2} \hat{Z}_{2m} \hat{Z}_{2\bar{n}} - \hat{Z}_2^{-1} \hat{Z}_{2m\bar{n}}) - 2)$$

= partial differential equation of two unknown functions assume: $V_0=0$ simplest case: only one hidden sector field

$$\partial_{h}\hat{K}\partial_{\bar{h}}\hat{K} = -\beta\partial_{h}\partial_{\bar{h}}\hat{K} \Longrightarrow \hat{K} = \beta\log(h+\bar{h}) \qquad \text{no-scale} \\ \text{sugra}$$

$$\hat{Z}_{2} = (h + \bar{h})^{-2/9 + \beta/6} \left[c_{1}(h + \bar{h})^{\omega} + c_{1}(h + \bar{h})^{-\omega} \right]^{5/9}$$

$$\omega = \frac{1}{2}\sqrt{-17 - 6\beta}$$

several hidden fields: try the Ansatz

$$K = \sum_{m} \beta_{m} \log(h_{m} + \bar{h}_{m}) + \kappa \prod_{m} (h_{m} + \bar{h}_{m})^{\alpha_{m}} \phi^{2} + O(\phi^{4})$$

"modular weights"

like abelian orbifold compactification of the heterotic string

 $-\beta = number of moduli$

saddle point if

$$\alpha \quad 36\alpha + 16 - 12\beta + \beta + 7^{2} = 0$$
$$\alpha = \sum_{m} \alpha_{m}, \quad \beta = \sum_{m} \beta_{m}$$

look for solutions that are rational numbers:

these values not found in abelian orbifold compactification

order by order

$$\Delta V_1 = V_4 \phi^4 + V_8 \phi^8 + V_{12} \phi^{12}$$
$$\Delta V_2 = V_6 \phi^6 + V_{10} \phi^{10} + V_{14} \phi^{14}$$

third and higher order negligible

must consider

$$K = \sum_{m} \beta_{m} \log(h_{m} + \bar{h}_{m}) + \hat{Z}_{2} \phi^{2} + \hat{Z}_{4} \phi^{4} + \hat{Z}_{6} \phi^{6} + \dots$$

saddle point, flatness maintained if

$$\Delta V_1' = \Delta V_1'' = 0$$

$$\Delta V_2' = 0$$

$$Z_4 \propto Z_2^2$$
only solutions
$$\hat{Z}_6 \propto \hat{Z}_2^3$$

with coefficients determined by α_m , β_m

K expansion in canonically normalized field

d=6 flat MSSM inflaton potential guaranteed by

$$K = \sum_{m} \beta_{m} \log(h_{m} + \bar{h}_{m}) + \kappa \prod_{m} (h_{m} + \bar{h}_{m})^{\alpha_{m}} \phi^{2}$$
$$+ \mu \left(\kappa \prod_{m} (h_{m} + \bar{h}_{m})^{\alpha_{m}} \right)^{2} \phi^{4} + \nu \left(\kappa \prod_{m} (h_{m} + \bar{h}_{m})^{\alpha_{m}} \right)^{3} \phi^{6}$$

$\beta = \sum_{m} \beta_{m}$	$\alpha = \sum_{m} \alpha_{m}$	$\mid \gamma = \sum_m lpha_m^2 / eta_m \mid$	μ	ν
-3	$-\frac{4}{9}$	$\frac{29}{81}$	$\frac{19}{108}$	$ rac{1507}{91854} + \delta rac{1}{21}$
-7	0	$\frac{20}{9}$	$ -\frac{7}{36} $	$-rac{19}{378}+\deltarac{1}{9}$
-7	$-\frac{25}{9}$	$-\frac{770}{81}$	$\frac{26}{27}$	$\left \frac{1158182}{203391} + \delta \frac{29}{186} \right $
-11	$-\frac{1}{9}$	$\frac{7613}{2673}$	$-\frac{559}{1782}$	$\frac{39281159}{671623326} + \delta \frac{31}{282}$
-11	-4	$-\frac{47}{3}$	$\frac{31}{12}$	$\frac{35507}{1458} + \delta \frac{13}{81}$.

 $\delta = \sum \alpha_m^3 / \beta_m^2$ free parameter т

in shorthand:

$$K = \ln Z(\beta) + \sum_{m=1}^{\infty} a_m (Z(\alpha) |\phi|^2)^m$$

known, several solutions

$$Z(x) = \prod_{n} Z_{n}^{x_{n}}$$
$$Z_{n} = h_{n} + h_{n}^{*}$$

Constraints relaxed if one does not require

$$\phi = \phi_0$$

Nurmi hep-th/0710.1613

saddle point shifted by sugra

constraints on the Kähler potential parameters slightly changed

some particularly simple logarithmic solutions

$$K = -\ln(\prod_{m} (h_{m} + h_{m}^{*})^{-\beta_{m}} - \kappa \prod_{m} (h_{m} + h_{m}^{*})^{\alpha_{m} - \beta_{m}} |\phi|^{2})$$

$\beta = \Sigma \beta_m$	$\alpha = \Sigma \alpha_m$	$\gamma = \Sigma \alpha_m^2 / \beta_m$	$\delta = \Sigma \alpha_m^3 / \beta_m^2$
-7	0	-5/4	free
-7	-25/9	-145/81	-985/720
-11	-1/9	-89/81	-721/720
-11	-4	-17/8	-91/64

Example of a solution for $\alpha = 0$, $\beta = -7$:

$$\beta_m = -1, \alpha_1 = 1, \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = -\frac{1}{4}, \alpha_6 = \alpha_7 = 0$$

proof of existence of a solution

supergravity corrections to inflation

- non-trivial Kähler potential \rightarrow non-minimal kinetic terms \rightarrow normalize to get canonical
- corrections from e^K

small (to lowest order) linear term

small, does not spoil MSSM inflation

small change in the spectral index: $n = 0.92 \dots 0.94$

N.B. for K=log(...) corrections vanish

STABILITY: RADIATIVE CORRECTIONS IN MSSM

Allahverdi, KE, Garcia-Bellido Jokinen, Mazumdar

1-loop radiative corrections:

$$A^2 \Longrightarrow A^2 \times \left(1 + K_1 - \frac{2}{3}K_2 + \frac{1}{5}K_3\right)$$

from RGEs, depend on the flat direction

seemingly fine-tuning required; e.g. LLe with unification:

$$K_1 \approx -0.017\xi^2; K_2 \approx -0.009\xi; K_3 \approx -0.029;$$

$$\xi = M_g / m_0$$

A/m shifted by $O(10^{-2})$

a saddle point remains

but: assumes A and m_0 are independent parameters instead of functions of the moduli fields

stability under radiative corrections in the observable sector

wave function renormalization

$$|\phi| \to Z^{1/2} |\phi|$$

can be absorbed by scaling the moduli: e.g.

$$K = -\ln(x^{-\beta_1}y^{-\beta_2} - \kappa x^{\alpha_1 - \beta_1}y^{\alpha_2 - \beta_2} |\phi|^2)$$
$$\rightarrow K(Z^{1/2}|\phi|) = K$$

$$x \to Z^{-\beta_2/(\alpha_2\beta_1)} x y \to Z^{-\beta_1/(\alpha_1\beta_2)} y$$

in the superpotential

$$\lambda \to Z^{-3} \lambda$$

vertex corrections?

moduli dynamics?

Lalak, Turzynski

if moduli shifted during inflation \rightarrow inflation affected

what stabilizes the moduli?

superpotential for the moduli?

(cosmological constant)

open questions:

initial condition

Kähler potential fixed \rightarrow implications for sparticle phenomenology

e.g. non-flat direction ψ

 A_3

$$W = \frac{1}{3}\hat{\lambda}\psi^3$$

phases

assume non-flat directions have all the same "modular weights" as the inflaton direction

at scale ϕ_0

in principle testable

trilinear A-term

 $\frac{4\cos\xi(\alpha-\beta/3)}{\sqrt{\alpha-\beta-2}}m_{\psi}$

Conclusions

- n=6 MSSM flat directions have all the ingredients for successful inflation
- inflaton is a gauge invariant combination of squarks or sleptons: couplings to matter known
- requires saddle point: but fine tuning can be a consequence of sugra (string theory?)
- proof of existence of a class of Kähler potentials that give rise to the saddle point: expansion in terms of the canonically normalized inflaton
- parameters of the inflaton potential (e.g. inflaton mass) can in principle be determined in laboratory
- many open questions