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Inflaton is a great idea ...but many open questions

particle theory origins?
-usually assumed to be gauge singlet
(radiative corrections can spoil flatness)
- Not motivated by theory: no known gauge singlets

coupling to baryons?
- reheating/origin of matter

If singlet, no testable consequences in the lab
- how can ever make sure inflation is correct?
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Inflation from MSSM

MSSM has scalars: sleptons, squarks, higgses
low scale = low H; field values << M,
perturbations ~ H/e = need very flat potential

but then: radiative corrections can spoil everything
need extra protection

susy, gauge symmetry - directions in MSSM scalar
field space with V=0 In the
limit of exact susy



Superpotential: F=ALHe + ’QHu + ...

unbrokensusy: | \V = Y, ‘Fi‘z + 14D?2
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squarks, sleptons




MSSM flat directions all classified:
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FLAT DIRECTIONS AND GRAVITY

* Inflation means gravity

* Gravity Is not renormalizable

* MSSM + gravity Is a non-renormalizable effective theory
valid at scales << M,

— must include all the non-renormalizable superpotential terms

* for each flat direction, the first non-renormalizable term allowed
by gauge and supersymmetry has a definite dimension n

* In addition, supersymmetry Is broken softly in the Nature

- flat directions lifted”: V # 0



Lifting flat directions

: 2| 42
soft susy breaking V =2m ‘¢‘

n n-3 n-1 n-3
non-renormalizable terms ‘F =¢ M7, pg " I M

\/ :‘FK‘Z :¢2(n—1) [ M 2(n-3)

soft breaking A-terms V =1Re AF /M (n=3)

All flat directions lifted by operators dim <9



example: udd, lifted by dim=6 operators

W D # (uud)(uud)
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| Flat direction potential

4= e’

V =im’¢” + Acos(néd +6,) Anf + 1 ¢
29 A nMS—3 n Mé(n—B)

A-term - n-fold set of minima when cos = -1 provided

(but not too large A: otherwise true minimum breaking colour)



barrier vanishes if

then

barrier if A2>8(n-1)m  inflation never ends
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Do
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point

m) very flat!



at the saddle point

3 \M(n-2)
gy =| ="
"l a+2n=2
n-2 m¢¢0

"= Jen(n-1) M,

saddle point “ eternal inflation regime

‘ 2-point correlator spreads in time

classical slow roll takes over when

m¢02 1/2 |
(¢0—¢):[ I\?IE’,J &, ‘ business as usual




the model:

L;L;e, or ud;d; flat direction  (others: wrong amplitude)

m, ~ O(1) TeV;n:6;A:JIOm¢;i~O(1)

H. . ~0O(1) GeV;g ~010*)GeV

slow roll = saddle point condition must hold very precisely

(A/m,)* =40(1+0O(10))



# of total e-folds ' 3
N = [H,dg/4~10
# of observationally
relevant e-folds ‘NCOBE ~ 47‘
(immeadiate decay) =
| | 1 H 5
amplitude of perturbations |0, = —~1.9x10
S ¢
4 .
slow roll parameters c zl/ N i n =~ _2/ N .
n,=1-4/N__~0.92
spectral tilt dn
- =—4/N ~-0.002
d In k COBE

no gravitational waves




REHEATING

after inflation oscillation frequency ~ m, ~ 103H
II‘ expansion negligible

udd breaks SU(3) U(1)
Lle breaks SU(2)xU(1)

||‘ Instant preheating

¢ = gauge bosons, gauginos —> squarks/quarks
within 1 Hubble time

Susy conserving masses ~ g¢

details remains to be worked out



Measuring inflaton parameters at colliders

cmB amplitude )y My () = 340 GeVA™

run down to TeV:

for LLe:

& (gaugino/flat) |m,(TeV)

2 (1.9 340 GeV
1 (1.3)> 340 GeV
0.5 (1.1)* 340 GeV

LHC slepton mass limits can rule the model out!




WHY SADDLE POINT?

What fixes A/m?

In MSSM just parameters put in by hand

I »  must go beyond MSSM

KE,Mether, Nurmi
Nurmi



SUPERGRAVITY CHANGES THINGS

expect corrections o ¢ 2
éVSLJGRA:I_I M [M]

M, @,
M

small, but the saddle point is finetuned:

H ~

— é\/SUGRA << VI\/ISSI\/I

2
S5 m ¢o ~ 10—10 S>> 10—16 depends on the
T M2 Kahler potential



Vsucra = e” (GiGijGij —3)
G_ — G (h ¢kKahler metric
J

|dden observable
=0 (h)
0ddp Vsuora ()~ e
e

A =V ®)sucra (h)

D=0



Require:

not accidental but holds for

A= x/ 40m ) all values of hidden sector

fields
¢ — ¢o
‘ Kahler potential, moduli fields



KE, Mether, Nurmi
Let us assume

; A(h,)¢’
W=W(h,)+—"
" 6M 3
\ i \ flat direction

Kahler potential hidden sector

G:K+MMF

K =K(h,h,)+> Z,,(h,,h,)s"
n=1

does there exist K such that A = /40m )
Identically?




to lowest order

j> = (V, +V,8° +V,8° +V,00"°)(L+0(4%))

V K

V|

Z,(K"K_+K"K"“(Z,%2, 7, -2,7, )-2)

etc. saddle point condition

N>

—6Z,'K"Z, +3
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N N

=20(Kme+KmKﬁ(2 7, 2, —2,Z, )—2)

= partial differential equation of two unknown functions

assume: V,=0



simplest case: only one hidden sector field

N

10,Ka:K =—£0,0:K = K = Slog(h +h)]

no-scale
sugra

2, =(h+hy [ c,(h+h)” +c (h+h) > ]"

a):%\/—17—6,6’

||]:> MSSM inflaton potential as the leading order



several hidden fields: try the Ansatz

K=> B,log(h, +h,)+«] [ (h, +ﬁm)“1m¢2 +0(4*)

’modular weights”

like abelian orbifold compactification - 8= number of moduli
of the heterotic string

saddle point if
o 36a+16-128 + B+7 “ =0

OJZZCZm, ,B:Zﬂm




look for solutions that are rational numbers:

» saddle point if

these values not found in abelian orbifold compactification

:Zmﬁm CK:Zmam
—3 _4
9
—7 0
—7 _2%_5
—11 —:
—11 —4




HIGHER ORDER

K = 0(¢?) uu: >V =Vyeeu 1+0(47))

do these spoil flatness?

order by order

Avl :V4¢4 +V8¢8 +V12¢12
AVZ :V6¢6 +V10¢10 +V14¢14

third and higher order negligible



must consider

K=> B, logh,+h)+Z,6° +Z,4+Z.¢° +..

saddle point, flatness maintained if

r n_ 2 oC 22
AVy'=AV'=0 > A4 AZ only solutions
AV, =0 Ly Z,

with coefficients determined by o, B,

K expansion in canonically normalized field



> d=6 flat MSSM inflaton potential guaranteed by

2
+ 1 Kl_[(hm+ﬁm)0‘m ¢ +v KH(hm+ﬁm)“m

K=Y B, log(h,+h,)+«[ [(h,+h,)"¢’
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INn shorthand:

K=InZ(p)+3 a, (Z(a)|g )"

\

known, several solutions



Constraints relaxed if one does not require

=
|
-

Nurmi hep-th/0710.1613

saddle point shifted by sugra

constraints on the Kahler potential parameters
slightly changed

4 344

some particularly simple logarithmic solutions




4)

K = —In(H(hm + h;)_ﬂm —K‘H(hm + h;‘)am_ﬁm

B=2B,, aA=Z o, =20,/ B, 0=2a.3/B,2
7 0 -5/4 free

-/ -25/9 -145/81 -985/720
-11 -1/9 -89/81 -721/720
-11 -4 -17/8 -91/64

Example of a solutionfora =0, } =-7:

1
b.=—Vvoa=la,=0=0,=0.=—,0,=a, =0

proof of existence of a solution



supergravity corrections to inflation

- non-trivial Kahler potential = non-minimal kinetic terms
—> normalize to get canonical

- corrections from eK

ﬂﬂ:> small (to lowest order) linear term

ﬂﬂ:> small, does not spoil MSSM inflation

ﬂﬂ:> small change 1n the spectral index: n=0.92 ... 0.94

N.B. for K=log(...) corrections vanish



STABILITY: RADIATIVE CORRECTIONS IN MSSM

Allahverdi,KE, Garcia-Bellido Jokinen, Mazumdar

1-loop radiative corrections:

2 1 from RGEs, depend
, , 2 1 , depen
A= A" x (1"‘ K1 3 Kz + 5 K3) on the flat direction

‘ seemingly fine-tuning required; e.g. LLe with unification:

K, ~-0.017£%: K, ~ —0.009&: K, ~ —0.029;

E=M ; /' m, A/m shifted by O(10-2)

a saddle point remains

but: assumes A and m, are independent parameters

Instead of functions of the moduli fields



stability under radiative corrections in the observable sector

. - 1/2
wave function renormalization M —>Z ‘¢‘

can be absorbed by scaling the moduli: e.g.

K =— In(X_ﬁl y—ﬁz _ Io(al_ﬁl ya’z—ﬁz ‘¢‘2)
— K(Z"*|g)) =K
:: X — 7 Pellah)y in the superpotential
y_)Z—ﬂll(Oflﬁz)y ﬂ_)z—3/1

vertex corrections?



moduli dynamics? Lalak, Turzynski

If moduli shifted during inflation = inflation affected
what stabilizes the moduli?
superpotential for the moduli?
(cosmological constant)
open questions:

Initial condition



Kahler potential fixed - implications for sparticle phenomenology

e.g. non-flat direction v W = %in

assume non-flat directions
have all the same “modular

. weights” as the inflaton direction
) trilinear A-term & fl

/ phases

_4cosé(a—p13)
A= \/a—ﬁ—Z T

) in principle testable

at scale ¢,




Conclusions

n=6 MSSM flat directions have all the ingredients for
successful inflation

Inflaton Is a gauge Invariant combination of squarks or
sleptons: couplings to matter known

requires saddle point: but fine tuning can be a
consequence of sugra (string theory?)

proof of existence of a class of Kahler potentials that give
rise to the saddle point: expansion in terms of the
canonically normalized inflaton

parameters of the inflaton potential (e.g. inflaton mass)
can in principle be determined in laboratory

many open questions



