Constraining the Dark Energy Potential with BAO Surveys

Enrique Fernández Martínez MPI für Physik Munich

In collaboration with L. Verde

The Accelerating Universe: SNIa

The Accelerating Universe

The Friedmann Equations

Einstein's Equations + Homogeneity and Isotropy

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=-\kappa T_{\mu \nu}
$$

FRW Metric with $\quad \kappa=8 \pi G \quad d s^{2}=d t^{2}-a^{2}(t)\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}\right)$
$H^{2}=\left(\frac{\dot{a}}{a}\right)^{2}=\frac{\kappa}{3} \rho-k \frac{c^{2}}{a^{2}} \quad \frac{\ddot{a}}{a}=-\frac{\kappa}{6}(\rho+3 p)$
For $\ddot{a}>0$ We need $3 p<-\rho$ but $\left\{\begin{array}{l}p=0 \text { for matter } \\ p=\frac{\rho}{3} \text { for radiation }\end{array}\right.$

Cosmological Constant

Adding a Cosmological Constant Λ to the Einstein Equation

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}-\Lambda g_{\mu \nu}=-\kappa T_{\mu \nu}
$$

The Friedmann Equations become

$$
\left\{\begin{array}{l}
H^{2}=\left(\frac{\dot{a}}{a}\right)^{2}=\frac{\kappa}{3} \rho+\frac{\Lambda}{3}-k \frac{c^{2}}{a^{2}} \quad \text { with } \quad \kappa=8 \pi G \\
\frac{\ddot{a}}{a}=-\frac{\kappa}{6}(\rho+3 p)+\frac{\Lambda}{3} \quad \text { If } \Lambda \text { dominates } \ddot{a}>0
\end{array}\right.
$$

Modifying the Cosmological Constant

But what if Λ is not a constant?
Alternative parameterizations of Dark Energy

- Constant equation of state

$$
p=-\rho=-\frac{\Lambda}{8 \pi G} \quad \Rightarrow \quad p=w \rho
$$

- More general equations of state

$$
\begin{gathered}
w(z)=w_{0}+w^{\prime} z \quad w(a)=w_{0}+w_{a}(1-a) \\
\text { DE task force }
\end{gathered}
$$

A More general parameterization

But nature could be much more general than that...
If Dark Energy came from the potential of a scalar field $V(\phi)$
$\rho_{\phi}=K+V(\phi) \quad p_{\phi}=K-V(\phi) \quad$ with $\quad K=\frac{1}{2} \dot{\phi}^{2}$

The Friedmann Equations become

$$
\left\{\begin{array}{l}
H^{2}=\frac{\kappa}{3}(\rho+V+K)-k \frac{c^{2}}{a^{2}} \\
\frac{\ddot{a}}{a}=-\frac{\kappa}{6}(\rho+3 p+4 K-2 V(\phi))
\end{array}\right.
$$

If $V(\phi)$ dominates we can also have $\ddot{a}>0$
but $V(z)$ could be a very general function of z

A More general parameterization

Even if $V(z)$ is a general function we need to parameterize it and try to fit it to data

We expand the potential in Chebyshev polynomials

$$
V(z) \approx \sum_{n=0}^{N} \lambda_{n} T_{n}\left(2 \frac{z}{z_{\max }}-1\right)
$$

with $z_{\text {max }}$ the maximum
redshift of the survey
J. Simon, L. Verde and R. Jiménez astro-ph/0412269

We will study the constraints that BAO surveys can place on the first three coefficients λ_{i}

BAO

Dark Matter Baryons Photons Neutrinos

Animation by D. Eisenstein

BAO

Dark Matter Baryons Photons Neutrinos

Animation by D. Eisenstein

BAO

Dark Matter Baryons Photons Neutrinos

Animation by D. Eisenstein

BAO

The distance traveled by sound until recombination

$$
\begin{aligned}
\text { Rs }= & 153.3 \pm 2.0 \text { Mpc WMAP 5th year } \\
& \text { provides a "standard ruler" }
\end{aligned}
$$

Measuring its transverse size $\Delta \theta$ gives:

$$
d_{A}^{c o}=\int_{0}^{z} \frac{c}{H\left(z^{\prime}\right)} d z^{\prime}=\frac{R_{s}}{\Delta \theta}
$$

Measuring its radial size Δz gives:

$$
H(z)=\frac{c \Delta z}{R_{s}}
$$

PAU (Physics of the Accelating Universe)

PAU is a photometric survey but with ~ 40 filters of $\sim 100 \AA$
Delta $\lambda=100 \AA$

Figure by T. Benítez
This allows to measure the redshift with $\sigma_{z} \sim 0.0035(1+z)$
Will measure between $\mathrm{z}=0.1-1$

Adept (Advanced DE Physics Telescope)

Space-based telescope to probe DE through observation of SN Ia and BAO

Spectroscopic redshifts

Can go deeper in redshift, will measure between $z=1-2$

BAO Errors

In C. Blake et al. 2005 several BAO surveys were simulated and a formula to estimate the precision of the survey was fitted

$$
\begin{array}{rlr}
\sigma_{H}\left(z_{i}\right) & =x_{0}^{H} \frac{4}{3} \sqrt{\frac{V_{0}}{V_{i}}} f_{n l}\left(z_{i}\right) & \sigma_{d}\left(z_{i}\right)=x_{0}^{d} \frac{4}{3} \sqrt{\frac{V_{0}}{V_{i}}} f_{n l}\left(z_{i}\right) \\
f_{n l}\left(z_{i}\right) & =\left\{\begin{array}{ccc}
1 & z>1.4 & x_{0}^{d}=0.0085 \\
\left(\frac{1.4}{z}\right)^{1 / 2} & z<1.4 & x_{0}^{H}=0.0148
\end{array}\right. \\
\hline
\end{array}
$$

We have studied two future BAO surveys: PAU and Adept

PAU	Adept
$A=10000$ square degrees	$\mathrm{A}=30000$ square degrees
9 redshift bins	10 redshift bins
between 0.1 and 1	between 1 and 2

The importance of measuring along the line of sight

Using BAO as Standard Ruler
Information on $d_{A}(z)$ only
Information on $\mathrm{H}(\mathrm{z})$ only

Adept 1, 2 and 3σ constraints on the first 3 coefficients Assuming a Λ CDM model $\Omega_{\text {m0 }}=0.24$ and 1σ priors on $\Omega_{\mathrm{m} 0} \mathrm{~h}^{2}(0.01), \Omega_{\mathrm{k0}}(0.03)$ and $\mathrm{H}_{0}(8 \mathrm{Km} / \mathrm{s} / \mathrm{Mpc})$

PAU

Using BAO as Standard Ruler

PAU 1, 2 and 3σ constraints on the first 3 coefficients
Assuming a Λ CDM model $\Omega_{\mathrm{mo}}=0.24$
and 1σ priors on $\Omega_{m 0} h^{2}(0.01), \Omega_{k 0}(0.03)$ and $\mathrm{H}_{0}(8 \mathrm{Km} / \mathrm{s} / \mathrm{Mpc})$

Adept

Using BAO as Standard Ruler

Adept 1, 2 and 3σ constraints on the first 3 coefficients Assuming a Λ CDM model $\Omega_{\mathrm{m} 0}=0.24$ and 1σ priors on $\Omega_{m 0} h^{2}(0.01), \Omega_{\mathrm{k} 0}(0.03)$ and $\mathrm{H}_{0}(8 \mathrm{Km} / \mathrm{s} / \mathrm{Mpc})$

Constraints on the potential

1 and 2σ constraints on the potential

Constraints on the potential

J. Simon, L. Verde and R. Jiménez astro-ph/0412269

1 and 2σ constraints on the potential

DE Equation of State

What about parameterizing Dark Energy through its equation of state $w(z)$?
$w(z)$ can also be expanded in Chebyshev Polynomials:

$$
w(z) \approx \sum_{n=0}^{N} w_{n} T_{n}\left(2 \frac{z}{z_{\max }}-1\right)
$$

If $w>-1$ the two descriptions are equivalent

Constraints on the equation of state

1 and 2σ constraints on the equation of state

Conclusions

- A non parametric reconstruction of dynamical DE requires a precise measurement of $H(z)$ and $H^{\prime}(z)$
- BAO can directly probe $\mathrm{H}(\mathrm{z})$
- $\mathrm{H}^{\prime}(\mathrm{z})$ much more challenging observationally
- Lacking a measurement of $\mathrm{H}^{\prime}(z)$ we need a parameterization of DE to fit data
- Future BAO experiments can constrain $\mathrm{V}(\mathrm{z})$ and $\mathrm{w}(\mathrm{z})$
- Excellent probes of dynamical DE

Constraints on the potential

1 and 2σ constraints on the potential

Reconstruction of the potential

From the Friedmann Equations

$$
\begin{aligned}
& \qquad V(z)=\left(3-\varepsilon_{1}\right) \frac{H^{2}}{\kappa}+\frac{1}{2}\left(p_{T}-\rho_{T}\right) \\
& \text { with } \quad \varepsilon_{1}=-\frac{\dot{H}}{H^{2}}=1-\frac{\ddot{a}}{a} H^{-2}=\frac{d H}{d z} \frac{(1+z)}{H}
\end{aligned}
$$

$H(z)$ and $H^{\prime}(z)$ needed to reconstruct $V(z)$

Galaxy Ages

Using Relative Galaxy Ages as Standard Chronometers

1 and 2σ contours
J. Simon, L. Verde and R. Jiménez astro-ph/0412269

Supernovae

Using SN as Standard Candles

1 and 2σ contours
J. Simon, L. Verde and R. Jiménez astro-ph/0412269

From the supernovae data of A. G. Riess et al astro-ph/0402512

