Constraining the Dark Energy Potential with BAO Surveys

Enrique Fernández Martínez MPI für Physik Munich

In collaboration with L. Verde

The Accelerating Universe: SNIa

The Accelerating Universe

The Friedmann Equations

Cosmological Constant

Adding a *Cosmological Constant* Λ to the Einstein Equation

$$R_{\mu\nu} - \frac{1}{2} Rg_{\mu\nu} - \Lambda g_{\mu\nu} = -\kappa T_{\mu\nu}$$

The Friedmann Equations become

Modifying the Cosmological Constant

But what if Λ is not a constant?

Alternative parameterizations of **Dark Energy**

Constant equation of state

$$p = -\rho = -\frac{\Lambda}{8\pi G} \implies p = w\rho$$

More general equations of state

 $w(z) = w_0 + w'z$ $w(a) = w_0 + w_a(1-a)$

DE task force

A More general parameterization

But nature could be much more general than that...

If Dark Energy came from the potential of a scalar field $V(\phi)$

$$\rho_{\phi} = K + V(\phi) \qquad p_{\phi} = K - V(\phi) \qquad \text{with} \qquad K = \frac{1}{2}\dot{\phi}^{2}$$
The Friedmann Equations become
$$\begin{cases}
H^{2} = \frac{\kappa}{3}(\rho + V + K) - k\frac{c^{2}}{a^{2}} \\
\frac{\ddot{a}}{a} = -\frac{\kappa}{6}(\rho + 3p + 4K - 2V(\phi))
\end{cases}$$

If $V(\phi)$ dominates we can also have $\ddot{a} > 0$

but V(z) could be a very general function of z

A More general parameterization

Even if V(z) is a general function we need to parameterize it and try to fit it to data

We expand the potential in Chebyshev polynomials

$$V(z) \approx \sum_{n=0}^{N} \lambda_n T_n \left(2 \frac{z}{z_{\text{max}}} - 1 \right)$$

with z_{max} the maximum redshift of the survey

J. Simon, L. Verde and R. Jiménez astro-ph/0412269

We will study the constraints that BAO surveys can place on the first three coefficients λ_i

BAO

Dark Matter Baryons Photons Neutrinos

Animation by D. Eisenstein

BAO

Dark Matter Baryons Photons Neutrinos

Animation by D. Eisenstein

BAO

Dark Matter Baryons Photons Neutrinos

Animation by D. Eisenstein

The distance traveled by sound until recombination $Rs= 153.3 \pm 2.0 Mpc$ WMAP 5th year provides a "standard ruler"

Measuring its transverse size $\Delta \theta$ gives:

$$d_A^{co} = \int_0^z \frac{c}{H(z')} dz' = \frac{R_s}{\Delta \theta}$$

Measuring its radial size Δz gives:

$$H(z) = \frac{c\Delta z}{R_s}$$

PAU (Physics of the Accelating Universe)

PAU is a photometric survey but with ~ 40 filters of ~100 Å Delta λ =100 Å

Figure by T. Benítez

This allows to measure the redshift with $\sigma_z \sim 0.0035(1+z)$ Will measure between z = 0.1-1

Adept (Advanced DE Physics Telescope)

Space-based telescope to probe DE through observation of SN Ia and BAO

Spectroscopic redshifts

Can go deeper in redshift, will measure between z = 1-2

BAO Errors

In C. Blake et al. 2005 several BAO surveys were simulated and a formula to estimate the precision of the survey was fitted

We have studied two future **BAO** surveys: **PAU** and **Adept**

PAU A=10000 square degrees A=30000 square degrees 9 redshift bins between 0.1 and 1

Adept

10 redshift bins between 1 and 2

The importance of measuring along the line of sight

PAU

Using BAO as Standard Ruler

PAU 1, 2 and 3 σ constraints on the first 3 coefficients Assuming a Λ CDM model $\Omega_{m0} = 0.24$ and 1 σ priors on $\Omega_{m0}h^2$ (0.01), Ω_{k0} (0.03) and H₀ (8Km/s/Mpc)

Adept

Using BAO as Standard Ruler

Adept 1, 2 and 3 σ constraints on the first 3 coefficients Assuming a Λ CDM model $\Omega_{m0} = 0.24$ and 1 σ priors on $\Omega_{m0}h^2$ (0.01), Ω_{k0} (0.03) and H₀ (8Km/s/Mpc)

Constraints on the potential

1 and 2 σ constraints on the potential

Constraints on the potential

J. Simon, L. Verde and R. Jiménez astro-ph/0412269

1 and 2 σ constraints on the potential

DE Equation of State

What about parameterizing Dark Energy through its equation of state w(z)?

w(z) can also be expanded in Chebyshev Polynomials:

$$w(z) \approx \sum_{n=0}^{N} w_n T_n \left(2 \frac{z}{z_{\text{max}}} - 1 \right)$$

If W > -1 the two descriptions are equivalent

J. Simon, L. Verde and R. Jiménez astro-ph/0412269

Constraints on the equation of state

1 and 2 σ constraints on the equation of state

Conclusions

- A non parametric reconstruction of dynamical DE requires a precise measurement of H(z) and H'(z)
 - BAO can directly probe H(z)
 - H'(z) much more challenging observationally
- Lacking a measurement of H'(z) we need a parameterization of DE to fit data
- Future BAO experiments can constrain V(z) and w(z)
- Excellent probes of dynamical DE

Constraints on the potential

1 and 2 σ constraints on the potential

Reconstruction of the potential

From the Friedmann Equations

$$V(z) = (3 - \varepsilon_1) \frac{H^2}{\kappa} + \frac{1}{2} (p_T - \rho_T)$$

with
$$\varepsilon_1 = -\frac{\dot{H}}{H^2} = 1 - \frac{\ddot{a}}{a}H^{-2} = \frac{dH}{dz}\frac{(1+z)}{H}$$

H(z) and H'(z) needed to reconstruct V(z)

Galaxy Ages

Using Relative Galaxy Ages as Standard Chronometers

1 and 2 σ contours

J. Simon, L. Verde and R. Jiménez astro-ph/0412269

Supernovae

Using SN as Standard Candles

J. Simon, L. Verde and R. Jiménez astro-ph/0412269 From the supernovae data of A. G. Riess et al astro-ph/0402512