Astrophysical Consequences of Chameleon-Photon Mixing

Clare Burrage DAMTP, University of Cambridge

arXiv:0711.2966 Phys.Rev.D:043009, 2008 & C.B, A.C. Davis and D. Shaw (to appear)

Chameleons

Scalar-tensor theory of gravity with non-minimal couplings to matter

$$S = \int d^4x \sqrt{-g} \left(\frac{M_{Pl}^2}{2} R - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right) - \int d^4x \mathcal{L}_m(\psi_m^{(i)}, g_{\mu\nu}^{(i)})$$

 $g^{\mu\nu}_{(i)} = e^{-2\phi/M_i}g^{\mu\nu} \qquad \qquad V(\phi) = \Lambda^4 e^{\Lambda^n/\phi^n}$

Scalar field moves in an effective potential

$$V_{eff}(\phi) \equiv V(\phi) + \sum_{i} \rho_i e^{\beta_i \phi / M_{Pl}}$$

 $\frac{\beta}{M_P} = \frac{1}{M}$

Khoury & Weltman (2004)

Chameleons

Hass of the scalar field depends on the local matter density $V_{\text{eff}}(\phi)$

 nearly massless on cosmological scales
 massive field in the atmosphere

The thin-shell property

Here the chameleon force produced by a massive body is due only to a thin shell near the surface

$$\frac{\Delta R_c}{R_c} \equiv \frac{(\phi_{\infty} - \phi_c)}{6\beta M_{Pl}\Phi_N} \cdot \ll 1$$

∺Thin shell

deviations from Newton's law

$$\theta = 2\beta^2$$

Khoury & Weltman (2004)

Chameleon Cosmology

#Attractor Solution

☐ follows the minimum of the effective potential

% In agreement with cosmological observations
(Redshift of recombination, BBN) if:

$$\Omega_{\phi}^{(i)} \lesssim \frac{1}{6}$$

₭ Equation of state

 \bigtriangleup early times $\omega \approx 0$ $T \gtrsim 10 \text{MeV}$

 \square late times $\omega \approx -1$ $T \lesssim 10 \mathrm{MeV}$

#The chameleon is a natural DE candidate!

Brax, van de Bruck, Davis, Khoury, Weltman (2004)

Photon-Chameleon Mixing

∺ In the presence of a magnetic field the chameleon couples to photons

% In a homogeneous magnetic field

$$\begin{bmatrix} \omega^2 + \partial_x^2 + \begin{pmatrix} -\omega_p^2 & 0 & 0 \\ 0 & -\omega_p^2 & \frac{B\omega}{M} \\ 0 & \frac{B\omega}{M} & -m_c^2 \end{pmatrix} \begin{bmatrix} A_{\parallel} \\ A_{\perp} \\ \phi \end{bmatrix} = 0$$

 $\int dt = \frac{\phi B^2}{2}$

% Probability of conversion

$$P(\gamma_{\perp} \to c) = \frac{4\omega^2 B^2}{M^2 (\omega_p^2 - m_c^2)^2 + 4\omega^2 B^2} \sin^2 \left(\frac{x\sqrt{M^2 (\omega_p^2 - m_c^2)^2 + 4\omega^2 B^2}}{4\omega M}\right)$$

Photon-Chameleon Mixing

$$P(\gamma_{\perp} \to c) = \frac{4\omega^2 B^2}{M^2 (\omega_p^2 - m_c^2)^2 + 4\omega^2 B^2} \sin^2 \left(\frac{x\sqrt{M^2 (\omega_p^2 - m_c^2)^2 + 4\omega^2 B^2}}{4\omega M}\right)$$

₭ Achromatic if

 $\blacksquare {\rm High\ energy\ photons} \quad M |\omega_p^2 - m^2| \ll B \omega$

$$P(\gamma_{\perp} \to c) \approx \sin^2\left(\frac{L_{dom}B}{2M}\right)$$

Imixing is maximal \bigtriangleup Large oscillation length $2\pi L_{dom} \ll L_{osc}$

$$P(\gamma_{\perp} \to c) \approx \frac{B^2 L_{dom}^2}{4M^2}$$

$$L_{osc} = \frac{4\pi\omega M}{\sqrt{M^2(\omega_p^2 - m_c^2)^2 + 4\omega^2 B^2}}$$

Experiments

Herein and the second strain and the seco

#Also consistent with searches for axion like particles (PVLAS, CAST)

#Parameters in the model have to satisfy

 $10^6 \text{ GeV} < M$ $\Lambda \sim 10^{-3} \text{ eV}$

Khoury & Weltman (2004). Brax, van de Bruck, Davis, Mota, Shaw (2007). Brax, van de Bruck, Davis (2007).

Distance Measurements

HLuminosity Distance $F_{\rm obs} = \frac{L}{4\pi d_L^2}$ Standard Candles ☑ Type 1a Supernova **H**Angular Diameter Distance $d_{\rm A} \equiv \frac{D}{\delta \theta}$ △Standard rulers \boxtimes FRIIb radio galaxies ⊠Compact radio sources \boxtimes X-ray clusters

Distance Measurements

 Etherington (1933): Distances based on standard candles and standard rulers agree, as long as
 There is a metric theory of gravity
 Photons travel on unique null geodesics
 Photon number is conserved

Reciprocity relation

 $d_L(z) = d_A(z)(1+z)^2$

Violation of the reciprocity relation

$$m - M = 5\log(d_L) - 25 = 5\log(d_A(1+z)^2) - 25$$

Bassett & Kunz (2004)

Violation of the reciprocity relation

Possible explanations

- △ Photons do not travel on null geodesics (e.g. torsion)
- △Variation of fundamental constants
- Systematic errors or biases
- Photon number non-conservation
 - ⊠scattering from dust/free electrons
 - ⊠photon decay
 - ≥photon mixing with other light states

But the supernova image is **brighter** than expected

Varying Background

#Assume:

- △Particles traverse N domains of equal length
- △B is homogeneous in each domain
- Discrete change in B from one domain to another
- The magnetic field has a random orientation but equal size in each domain

₭ Flux of particles

$$\begin{split} I_c(y) &= \frac{1}{3}(I_c(0) + I_{\gamma}(0)) + \frac{Q(y)}{3}(2I_c(0) - I_{\gamma}(0)) \qquad Q(y) = \left(1 - \frac{3P}{2}\right)^{y/L_{dom}} \\ I_{\gamma}(y) &= \frac{2}{3}(I_c(0) + I_{\gamma}(0)) + \frac{Q(y)}{3}(I_{\gamma}(0) - 2I_c(0)) \end{split}$$

Photons in the IGM

 $\begin{aligned} & \texttt{HIntergalactic medium}_{L_{dom}} \sim 1 \; \text{Mpc} \; \; \textit{medium} \; \rho_{IGM} \sim 10^{-44} \; \text{GeV}^4 \end{aligned}$

\approx Optical Photons $\omega \approx 10 \text{ eV}$

Independent if $M \lesssim 10^{10}$ GeV

System reaches equilibrium state

\approx CMB Photons $\omega \sim 10^{-4} \text{ eV}$

△Low energy regime

△Probability of conversion small

System does not reach equilibrium

$$P \leq 4B^2 \omega^2 / M^2 (\omega_p^2 - m^2)^2$$

\$\le 10^{-6}\$

Conversion in the Supernova

#Type 1a supernova is the thermonuclear explosion of a white dwarf with mass close to the Chandrasekhar limit

Simple model

Sphere, uniform density, initial radius $R_0 \sim 10^9$ cm

Expands with outer velocity $v = c/30 \sim 10^9 \text{ cm/s}$

Explosion is homologous

Photons emitted uniformly throughout the supernova

△Peak luminosity after 10 days

△No chameleons are produced by the reactions

Conversion in the Supernova

Hagnetic field $\frac{B_{SN}(t)}{B_{WD}} = \left(\frac{R_{WD}}{R_{SN}(t)}\right)^2$ $10^5 \text{ G} \lesssim B_{WD} \lesssim 10^{11} \text{ G}$

 \Re Oscillation length much greater than coherence length of magnetic field

☐ frequency independent oscillations

Hean free path of photons much smaller than radius of supernova

Random walk $N = 3R^2/L_{mfp}^2$

 $10^6 \text{ cm} \lesssim L_{mfp} \lesssim 10^{14} \text{ cm}$

 \Re Probability of conversion in the supernova

$$P_{\gamma \to c}(R_{SN}) \lesssim \frac{3B_{SN}^2 R_{SN}^2}{8M^2} \\ \lesssim 9.4 \times 10^{32} \left(\frac{B_{WD}^2}{\text{GeV}^2 M^2}\right)$$

Supernova Brightening

Here is an initial flux of chameleons from the supernova

₭ In the intergalactic medium

$$P_{\gamma \to \gamma}(y) = \frac{I_{\gamma}(y)}{I_{\gamma}(0)} = \frac{2}{2 + (1 - \frac{3}{2}P_{SN})^N} + Q(y) \left(\frac{(1 - \frac{3}{2}P_{SN})^N}{2 + (1 - \frac{3}{2}P_{SN})^N}\right)$$

Have to modify the reciprocity relation

$$d_L(z) = d_A(z)(1+z)^2$$

so that $d_L \to d_L / \sqrt{P_{\gamma \to \gamma}}$

Supernova Brightening

Supernova Brightening

*** Values used:** $P_{SN}N \approx 0.95$ $P_{IGM} \approx 10^{-4}$

₩ Which give:

$$B_{WD} \sim 10^3 \left(\frac{M}{\text{GeV}}\right) \text{ G}, \quad B_{IGM} \sim 10^{-20} \left(\frac{M}{\text{GeV}}\right) \text{ G}$$

Consistent with current experimental bounds
more data at high redshift / smaller error bars will significantly improve the constraints

Mixing in the Galaxy

For the Milky Way $B = 1\mu G$ s = 1 kpc $\rho \sim 10^{-24} \text{ gcm}^{-3}$ $\omega_p^2 = 4.2 \times 10^{-41} \text{ GeV}^2$ **# Achromatic mixing if** $7.6 \times 10^8 \text{ GeV} \ll M$ $P_G = \left(\frac{L_{dom}B}{2M}\right)^2 = 5.6 \times 10^{17} \left(\frac{M}{\text{GeV}}\right)^{-2}$

 \square Equal to P_{IGM} if intergalactic magnetic field saturates current upper bound

System in the equilibrium configuration for low redshift objects seen through the galaxy

Mixing in the Galaxy

Prediction:

The flux from low redshift objects will be changed by up to 1/3 when seen through the galaxy.

(compared to an equivalent object seen away from the galaxy)

Gamma Ray Bursts

The radiation from GRBs is polarised $I_{\gamma}^{\perp}(y) = \frac{1}{2}(1 - \delta_{\text{pol}}(y))I_{\gamma}(y), \qquad I_{\gamma}^{\parallel}(y) = \frac{1}{2}(1 + \delta_{\text{pol}}(y))I_{\gamma}(y)$ $\Pi = 100\delta_{\text{pol}}\%$

GRB930131 $35\% < \Pi < 100\%$ $3 \text{ keV} < \omega < 100 \text{ keV}$ GRB960924 $50\% < \Pi < 100\%$ $3 \text{ keV} < \omega < 100 \text{ keV}$ GRB041219a $\Pi = 96^{+39}_{-40}\%$ 100 - 350 keVGRB021206 $\Pi = (80 \pm 20)\%$ 0.15 - 2 MeV $(\Pi > 15\%)$ $(\Pi > 15\%)$

Gamma Ray Bursts

Hoton-chameleon mixing destroys polarisation $\delta_{pol}(y) = Q(y)\delta_{pol}(0)\frac{I_{\gamma}(0)}{I_{\gamma}(y)}$ where $Q(y) = \left(1 - \frac{3P}{2}\right)^{y/L_{dom}}$ **H** At the very least for $z \sim 1$ $\omega \approx 100 \, \text{keV}$ must have $\Pi > 50\%$ today **#**This gives bounds $B < 1.02 \times 10^{-20} \,\mathrm{G} \,\left(\frac{M}{1 \,\mathrm{GeV}}\right)$ $P_{IGM} < 2.4 \times 10^{-4}$

- Hereight Complete Strategy Strategy
- **#**The chameleon could be dark energy
- Hixing between photons and chameleons could explain the discrepancy between measurements of luminosity and angular diameter distances
- Predict a change in flux for objects seen through the galaxy
- Here the model t