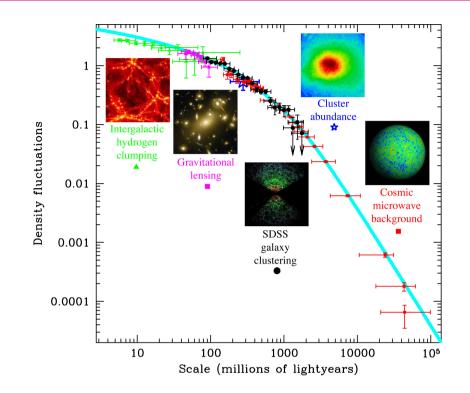

CMB constraints on fundamental physics

Anthony Challinor

Institute of Astronomy and Department of Applied Mathematics and Theoretical Physics University of Cambridge a.d.challinor@ast.cam.ac.uk


ESF Exploratory Workshop: Astrophysical Tests of Fundamental Physics Porto, 26–30 March 2008

WHAT DO WE LEARN FROM CMB FLUCTUATIONS?

- Constraints on cosmological parameters ($\Omega_b h^2$, $\Omega_m h^2$, d_A etc.)
- Initial conditions and primordial fluctuations (inflation?)
 - Character (adiabatic, gw waves?), spectra and non-Gaussian statistics
- IGM and structure formation at high redshift (dark energy, m_{ν} etc.)

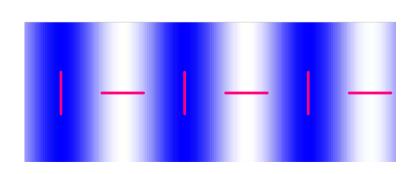
WHAT SCALES ARE INVOLVED?

- CMB probes fluctuations on comoving scales $10 \text{ Mpc} < k^{-1} < 10^4 \text{ Mpc}$
- Primary CMB probes primordial fluctuation in shell of radius $d_A = 14000$ Mpc and width $r_s(z_*) = 145$ Mpc \rightarrow comoving volume 350 Gpc³
 - Upcoming galaxy surveys (e.g. DES) $\sim tens\, {\rm Gpc}^3$
 - Ideal, full-sky 21-cm survey of dark ages: \sim 4 \times $10^3\,{\rm Gpc^3}$ down to scales $k^{-1}\sim 10^{-2}\,{\rm Mpc}$

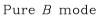
• Power spectrum of $\Delta T = \sum_{lm} a_{lm} Y_{lm}(\hat{n})$:

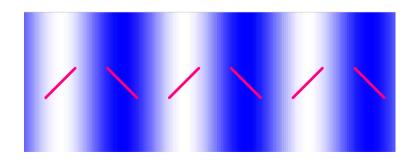
 $\langle a_{lm}a_{lm}^*\rangle = C_l\delta_{ll'}\delta_{mm'}$

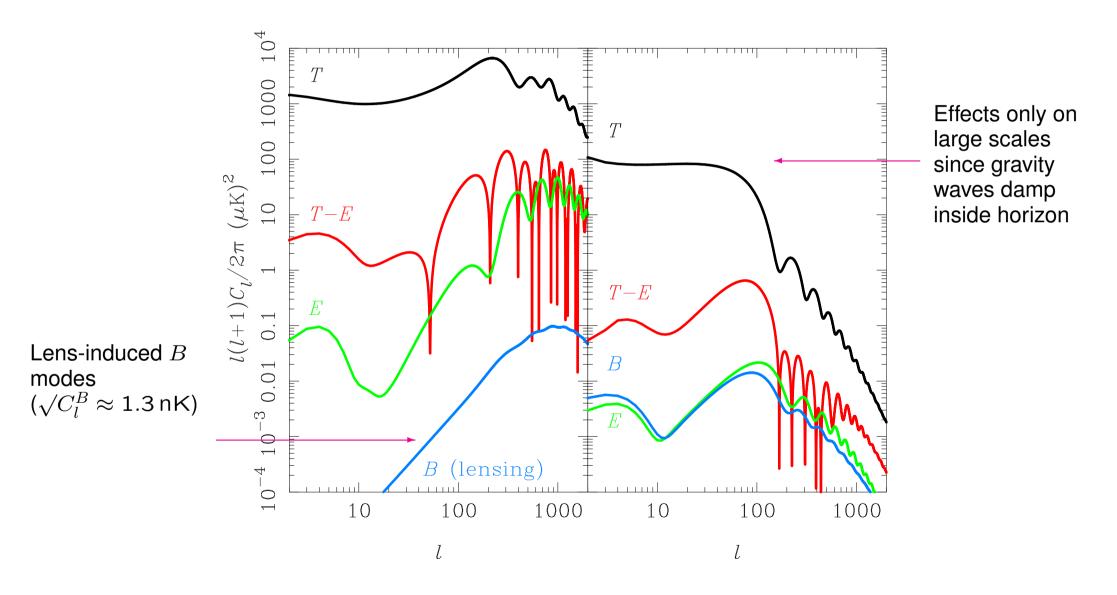
• Non-zero higher-order connected moments for non-Gaussian field; e.g. bispectrum


$$\langle a_{l_1m_1}a_{l_2m_2}a_{l_3m_3}\rangle = B_{l_1l_2l_3} \begin{pmatrix} l_1 & l_2 & l_3\\ m_1 & m_2 & m_3 \end{pmatrix}$$

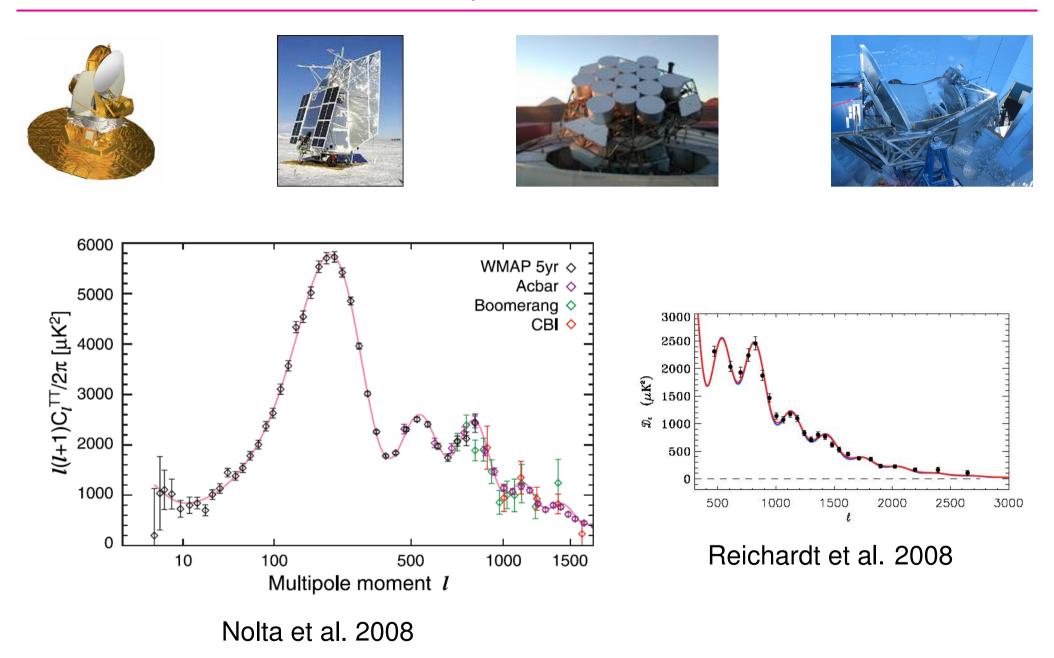
• Decomposition of linear polarization into *E* and *B* modes:

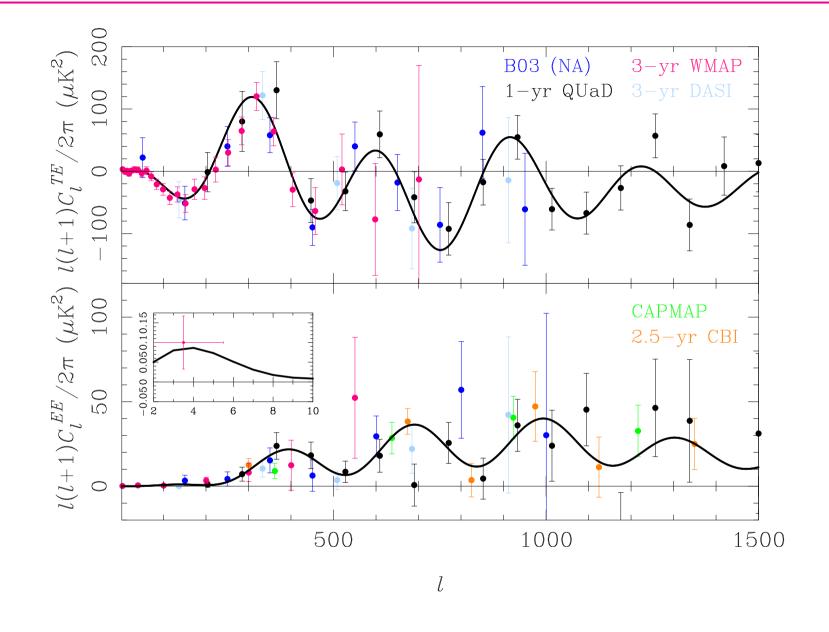

$$\mathcal{P}_{ab}(\hat{\boldsymbol{n}}) \equiv \frac{1}{2} \begin{pmatrix} Q & U \\ U & -Q \end{pmatrix} = \nabla_{\langle a} \nabla_{b \rangle} P_E + \epsilon^c{}_{(a} \nabla_{b)} \nabla_c P_B$$


– Only C_l^E , C_l^B and C_l^{TE} non-zero if parity respected in mean

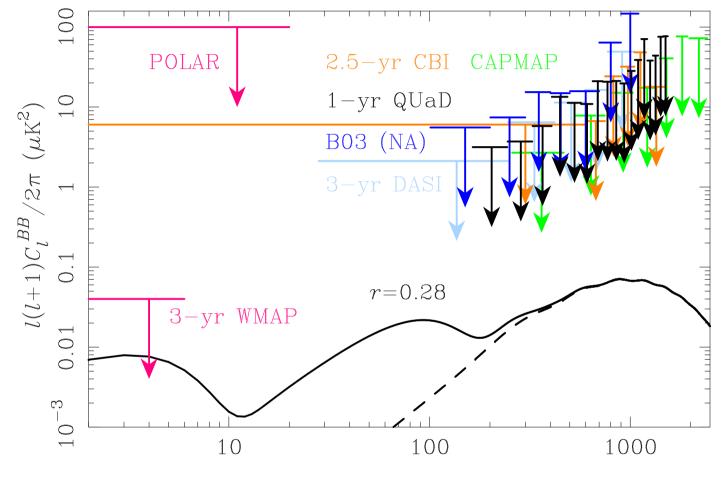

- Linear scalar fluctuations produce only *E*-mode polarization

Pure E mode



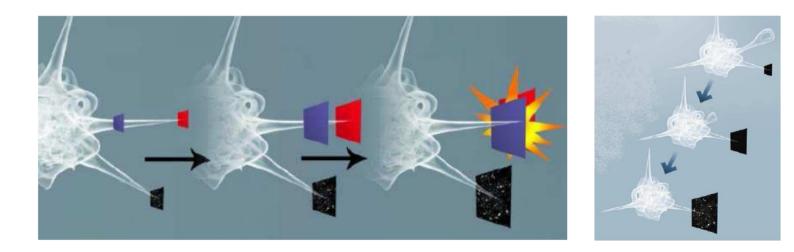


4

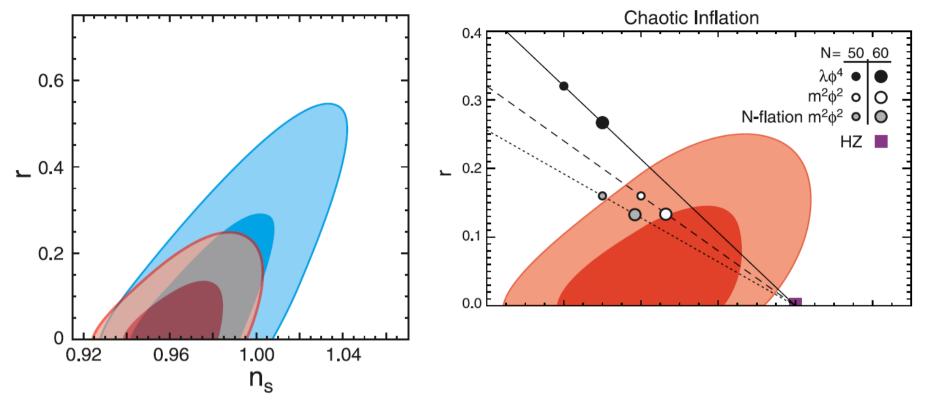

CURRENT C_l CONSTRAINTS: TT

CURRENT C_l CONSTRAINTS: TE and EE

• Large-angle *E*-modes $\Rightarrow \tau = 0.09 \pm 0.02$ (Dunkley et al. 2008)

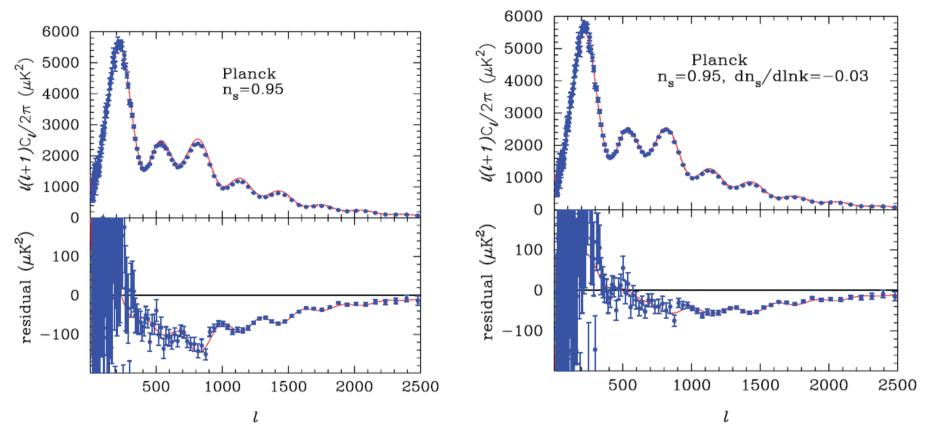


l


7

- Flat universe
 - $\Omega_K = -0.099^{+0.085}_{-0.100}$ from WMAP5 (weak H_0 prior and w = -1)
 - $-0.017 < \Omega_K < 0.0068$ from WMAP5+BAO (w = -1)
 - Similar for variable w with BAO and SN
- Nearly scale-invariant, almost power-law spectra
 - $n_s = 0.963 \pm 0.015$ from WMAP5, no running and r = 0 (little improvement from small-scale CMB)
 - Expect $dn_s/d \ln k \sim (n_s 1)^2$: $dn_s/d \ln k = -0.037 \pm 0.028$ from WMAP5 with r = 0
- Adiabatic fluctuations confirmed at 10% level for general models (Bean et al. 2006)
- Gaussianity confirmed at 0.1% level
- Gravitational waves?
 - r < 0.43 (< 0.58 with n_s running) from WMAP5 alone
 - r < 0.20 from WMAP5+BAO+SN

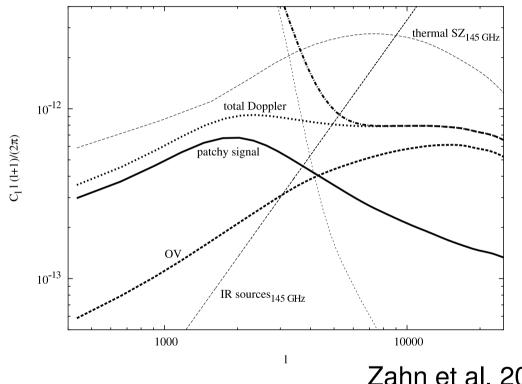
- Brane inflation from brane-antibrane annihilation (Dvali et al. 2001; Burgess et al. 2001) gives several stringy signatures
 - Cosmic (super-)strings (Sarangi & Tye 2002; Jones, Stoica & Tye 2002; Copeland, Myers & Polchinski 2004)
 - Isocurvature modes
 - Potentially large non-Gaussianity (Silverstein & Tong 2004)
 - No gravitational waves (Baumann & McAllister 2007; Kallosh & Linde 2007)
- Modular inflation from rolling of size and shape of extra dimensions (Blanco-Pillado 2004; Conlon & Quevedo 2006 etc.)


CONSTRAINTS ON PRIMORDIAL POWER SPECTRA

Komatsu et al. 2008

- Inflation energy scale unknown: r < 0.2 from low- $l \Delta T \Rightarrow E_{inf} < 2.2 \times 10^{16} \text{ GeV}$
- Dynamics not yet classified (e.g. small-field, large-field or hybrid phenomenology)
- $n_s < 1$ with CMB+BAO+SN and $n_s = 0.963 \pm 0.015$ from WMAP5, no running and r = 0
 - n_s - $\Omega_b h^2$ degeneracy main one now affecting n_s
- $dn_s/d \ln k = -0.037 \pm 0.028$ from WMAP5 with r = 0
 - Some shifts ($\sim -0.5\sigma$) if allow running or small-scale CMB

IMPROVEMENTS WITH PLANCK?



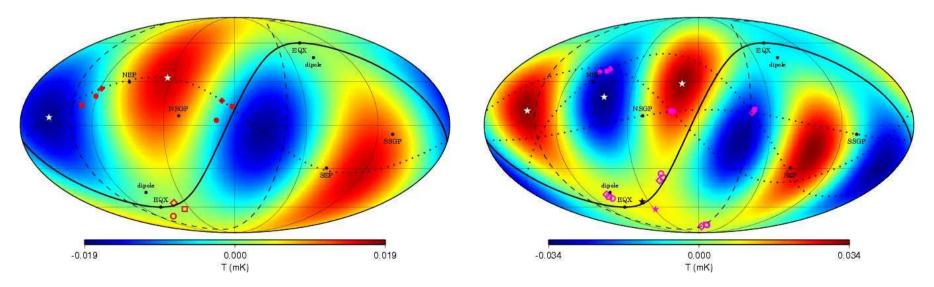
"Planck: the scientific programme" – Planck collaboration

• Marginalised error forecasts for $\ln \mathcal{P}_{\mathcal{R}}(k) = \ln A_s + (n_s - 1) \ln(k/k_0) + \frac{1}{2} (dn_s/d \ln k) \ln^2(k/k_0) + \cdots$

 $\Delta n_s = 0.0045$ and $\Delta (dn_s/d \ln k) = 0.005$

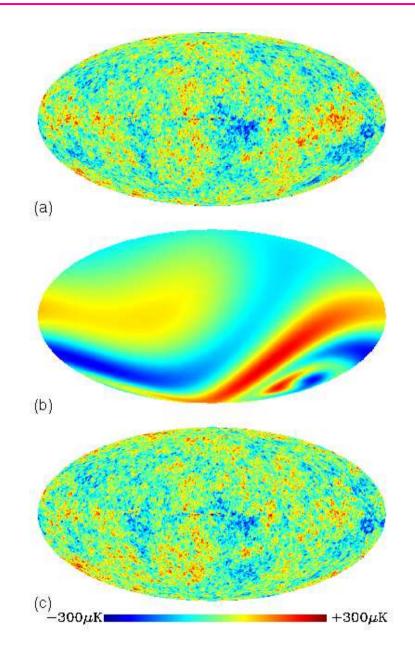
• Planck ΔT cosmic-variance limited to $l \sim 2500$ where secondaries becoming important:

model	τ_{ri}	Ω_{Λ}	ω_{dm}	ω_b	n_s	A_s
1σ	0.0035	0.010	0.0017	0.00018	0.0045	0.0050
Α	0.40	1.18	-1.10	1.71	2.14	0.16
В	1.26	1.66	-1.54	2.40	3.05	0.78
С	2.25	2.89	-2.69	4.20	5.62	1.58

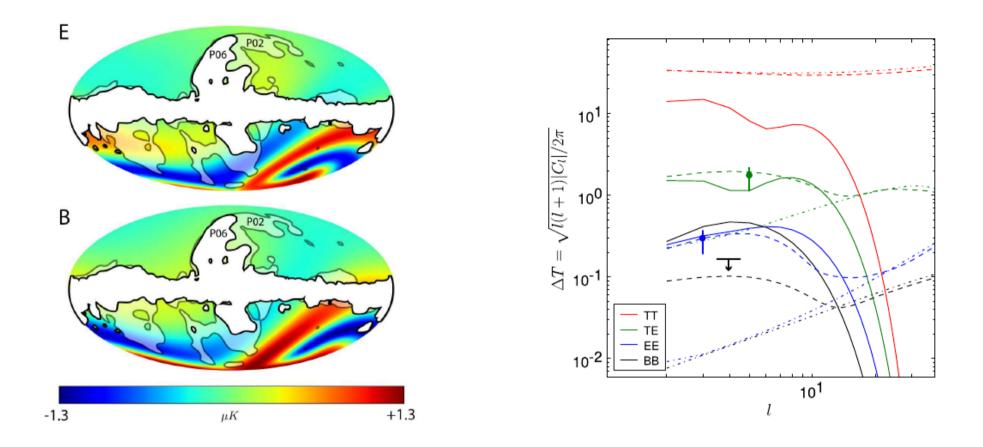

TABLE 1

BIAS IN UNITS OF THE STATISTICAL ERROR (\mathcal{B}_i) EXPECTED FOR COSMOLOGICAL PARAMETER ESTIMATION WITH PLANCK, IF TEMPERATURE AND POLARIZATION POWER SPECTRA ARE USED AND THE INFLUENCES OF KSZ/OV AND PATCHY REIONIZATION ARE NEGLECTED IN THE POWER SPECTRUM ANALYSIS. THE MAXIMUM MULTIPOLE IN OUR ANALYSIS WAS l = 4000.

Zahn et al. 2005


- Mitigate by removing high- $l \Delta T$ (polarization less affected) but $\sim 100\%$ hit in errors, or C_l template marginalisation?
- Also theoretical uncertainty in recombination and beam uncertainties?

- Several anomalous features in low-*l* temperature (Copi 2006 for review):
 - Low quadrupole
 - Quadrupole and octopole planar and aligned (perpendicular to ecliptic)
 - Power asymmetry between Northern and Southern hemispheres
 - Cold spot
- Fluke, cosmological (topology; solid dark energy; anisotropic generation of large-scale perturbations), local contamination (SZ; Rees-Sciama; Galactic), or instrumental?



UNIVERSAL ROTATION AND SHEAR?

- Jaffe et al. (2005) find 3σ evidence for correlation between WMAP and Bianchi VII_h template
 - Only considers a subset of dynamical freedom in VII_h models
- Corrected map free of most "largeangle anomalies"
- Evidence for global rotation and anisotropy?
- Requires parameters in conflict with smaller-scale fluctuations

TESTABLE POLARIZATION PREDICTIONS*

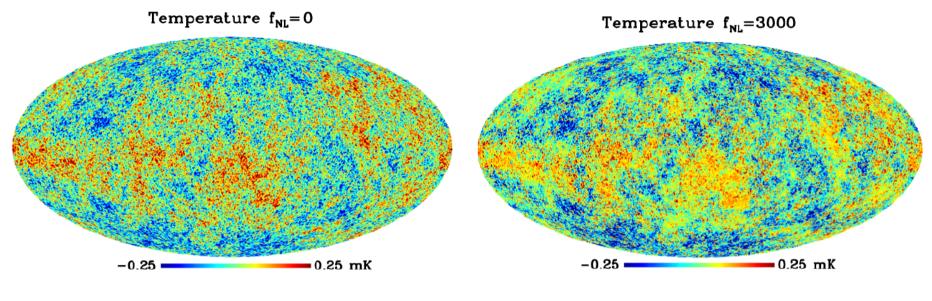
- Rough power spectrum analysis: best-fit to ΔT over-produces *B*-modes
- Also *E*-*B* cross-power too high $(\chi^2/15 = 4.3)$
- More rigorous map-based comparison in progress (McEwen et al. in prep.) including additional dynamics degrees of freedom

*Pontzen & AC 2007

• Bispectrum of primordial curvature perturbation

 $\langle \mathcal{R}(\boldsymbol{k}_1) \mathcal{R}(\boldsymbol{k}_2) \mathcal{R}(\boldsymbol{k}_3) \rangle \propto \delta(\boldsymbol{k}_1 + \boldsymbol{k}_2 + \boldsymbol{k}_3) F(\boldsymbol{k}_1, \boldsymbol{k}_2, \boldsymbol{k}_3)$

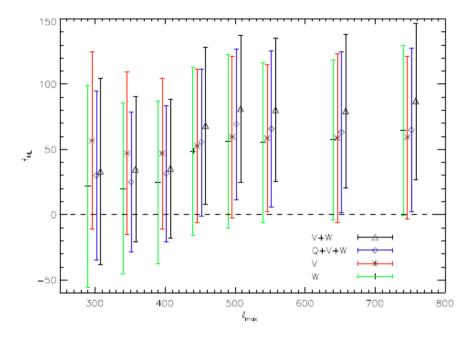
• Local form peaks on squeezed triangles


$$F(k_1, k_2, k_3) \propto f_{NL} \left(\frac{\mathcal{P}_{\mathcal{R}}(k_1)}{k_1^3} \frac{\mathcal{P}_{\mathcal{R}}(k_2)}{k_2^3} + 1 \leftrightarrow 3 + 2 \leftrightarrow 3 \right)$$

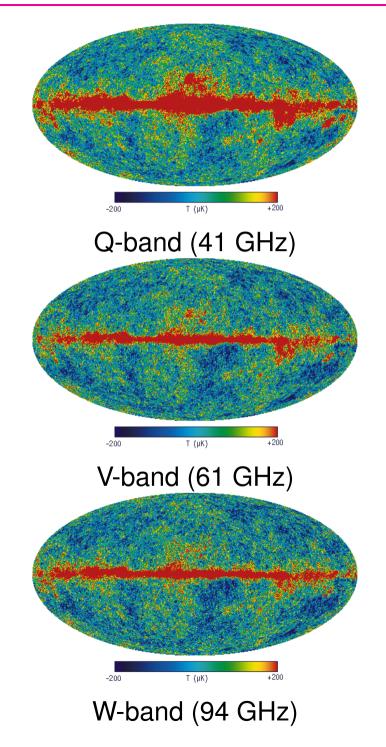
 Arises when non-Gaussianity created outside horizon (e.g. multi-field inflation, curvaton, fluctuating reheating):

$$\mathcal{R}(\boldsymbol{x}) = \mathcal{R}_G(\boldsymbol{x}) - \frac{3}{5} f_{NL} \left(\mathcal{R}_G^2(\boldsymbol{x}) - \langle \mathcal{R}_G^2(\boldsymbol{x}) \rangle \right)$$

- Small in single-field inflation: $f_{NL} \sim n_s 1$ in squeezed limit
- Non-local form peaks on equilateral triangles
 - E.g. $f[(\nabla \phi)^2]$ in DBI inflation


NON-GAUSSIANITY IN THE CMB

Liguori et al. (2007)

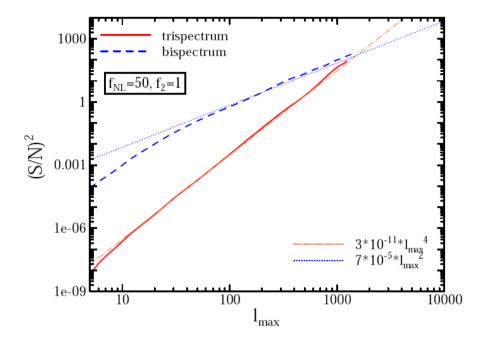

- Large-scale $\Delta T/T = \mathcal{R}/5$
 - Positive f_{NL} skews \mathcal{R} and ΔT negative
- Fractional departure from Gaussianity very well measured: $\sim |f_{NL}| \sqrt{P_R} < 10^{-3}$
- Planck should achieve $\Delta f_{NL} = 5$

TROUBLE FOR SIMPLE INFLATION?

Yadav & Wandelt (2007) • Headline figure: $27 < f_{NL}^{\text{local}} < 147$

- Statistical issues:
 - Selects highest S/N result
 - Jump in S/N from adding triangles with little statistical weight

• Komatsu (et al. 2008) bispectrum analysis:

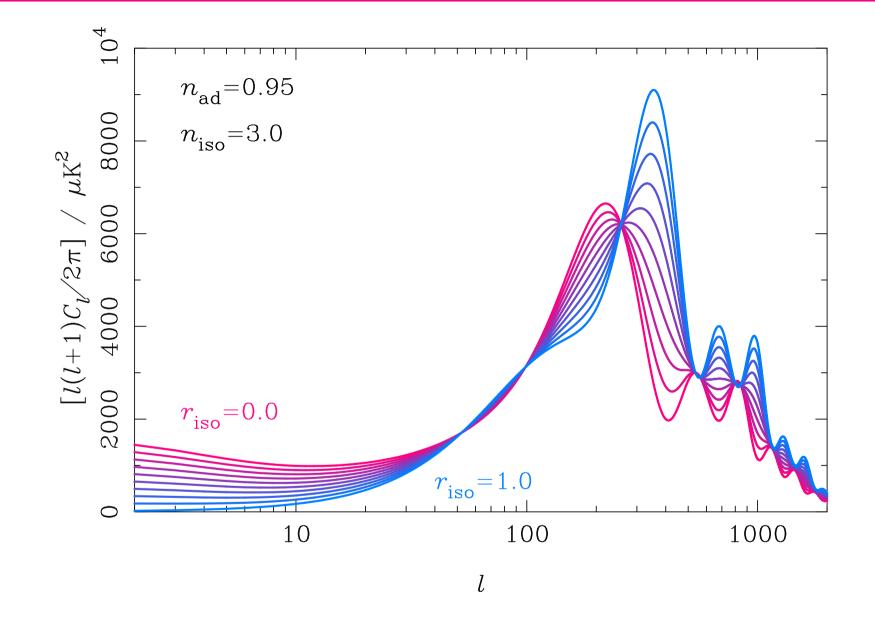

 $-9 < f_{NL}^{\text{local}} < 111$ and $-151 < f_{NL}^{\text{equilateral}} < 253$ (V + W and KQ75)

- Map noise lower by 22%
- New masks (e.g. KQ75 and KQ75p) that avoid potential upwards bias in f_{NL}
- Null tests fine for KQ75 and foreground-cleaned V W maps
- Corrections for point sources (small for local model)
- Analysis with Minkowski functionals: all consistent with Gaussianity

 $-178 < f_{NL}^{\text{local}} < 64$ (V + W and KQ75)

- Mild tension with bispectrum results for f_{NL}^{local}
- Kendrick Smith et al. WMAP5 analysis (Perimeter meeting, March 2008)
 - Optimal-weighting in bispectrum estimator
 - Foreground template marginalisation

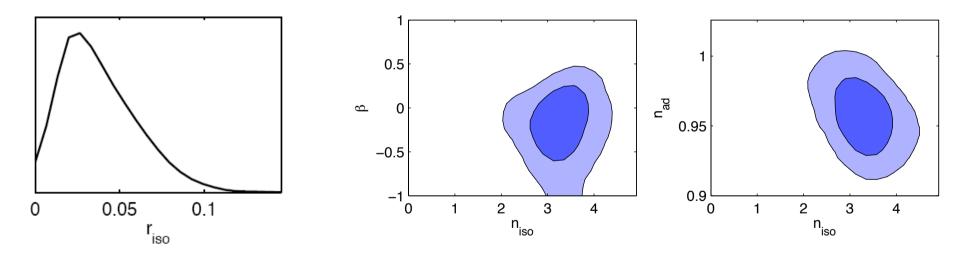
$$- f_{NL}^{\text{local}} = 21 \pm 22$$


Kongo & Komatsu (2006)

• For local model $\mathcal{R}(x) = \mathcal{R}_G(x) - \frac{3}{5}f_{NL}\left(\mathcal{R}_G^2(x) - \langle \mathcal{R}_G^2(x) \rangle\right) + f_2\mathcal{R}_G^3(x) + \cdots$

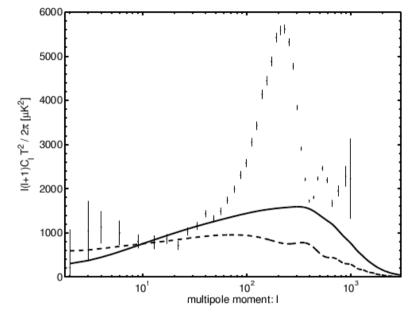
$$T(k_1, k_2, k_3, k_4) \propto \frac{1}{2} \underbrace{\left(\frac{6f_{NL}}{5}\right)^2}_{\tau_{NL}} \left(\frac{\mathcal{P}_{\mathcal{R}}(k_1)}{k_1^3} \frac{\mathcal{P}_{\mathcal{R}}(k_2)}{k_2^3} \frac{\mathcal{P}_{\mathcal{R}}(k_{14})}{k_{14}^3} + \text{perms}\right) + O(f_2)$$

- No direct constraints on τ_{NL} yet but $|\tau_{NL}| < 10^8$ from rhombus configurations for COBE (Kunz et al. 2001)
 - $\Delta \tau_{NL} \sim 200$ from Planck $\Rightarrow \Delta f_{NL} \sim 50/f_{NL}$


ISOCURVATURE MODES IN THE CMB

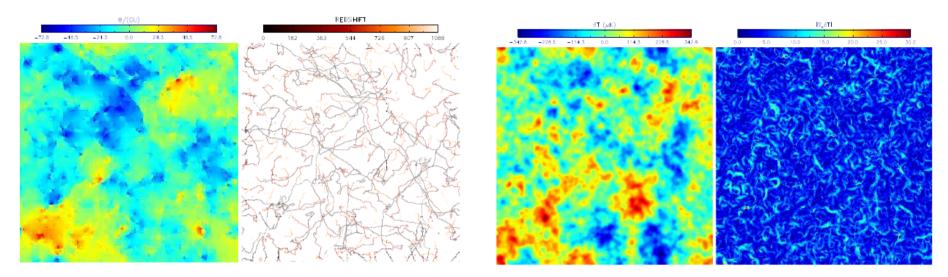
• Large-angle $\Delta T/T = \mathcal{R}/5 - 2\mathcal{S}/5 + ISW$

 $C_l = A(1-\alpha)C_l^{AA}(n_s) + A\alpha C_l^{II}(n_{\text{iso}}) + 2A\beta \sqrt{\alpha(1-\alpha)}C_l^{AI}[(n_s + n_{\text{iso}})/2]$

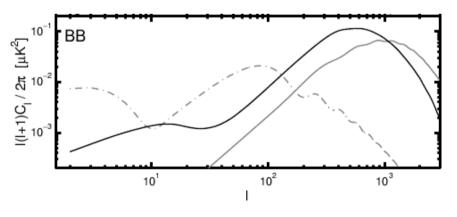

- WMAP5 constraints (Komatsu et al. 2008):
 - For β = 0 and $n_{\rm iso=1}$ (axion-type) α < 0.16 (CMB) and α < 0.067 (+ BAO and SN)
 - For $\beta = -1$ and $n_s = n_{iso}$ (e.g. curvaton decaying to CDM) $\alpha < 0.011$ (CMB) and $\alpha < 0.0037$ (+ BAO and SN)

Sollom, AC & Hobson, in prep.

• For general correlations and spectral indices: $r_{\rm iso} < 10\%$ from WMAP3, ACBAR, SDSS, BBN and SNLS


CONSTRAINTS ON LOCAL COSMIC STRINGS

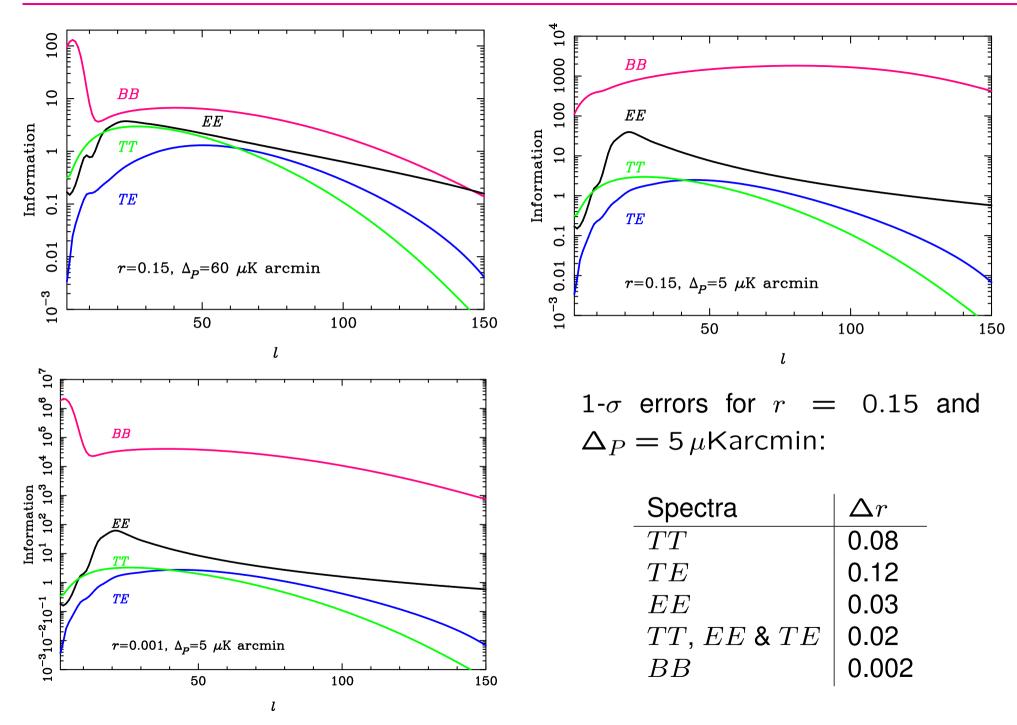
Bevis et al. 2007


- < 10% contribution (at 95%) to CMB temperature anisotropies
- Theoretical uncertainties in relation to $G\mu$:
 - $G\mu < 7 \times 10^{-7}$ from field-theory simulations (Bevis et al. 2007)
 - $G\mu < 2.7 \times 10^{-7}$ from approximations to Nambu-Goto (Pogosian et al 2006)
- Mindful of conclusion $n_s < 1$ in $r \approx 0$ models (e.g. Battye et al. 2008)

FUTURE CONSTRAINTS?

Fraisse et al. 2007

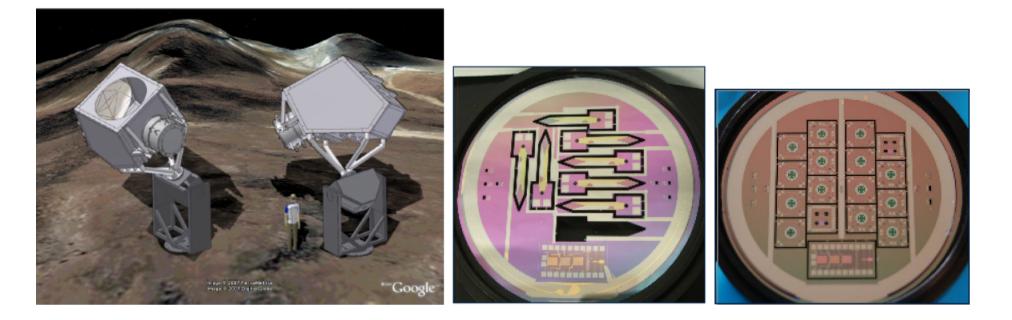
 At current upper limit, strings "eye-visible" in e.g. ACT maps (no sources, Gaussian secondaries!)


Bevis et al. 2007

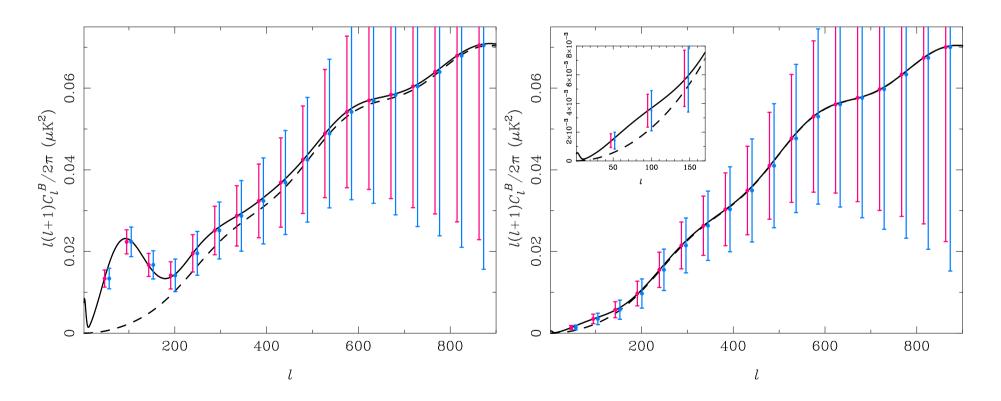
• Factor 6 improvement in $G\mu$ (to 1×10^{-7}) from upcoming sub-orbital B-mode obs

Searching for gravity waves in B-mode polarization

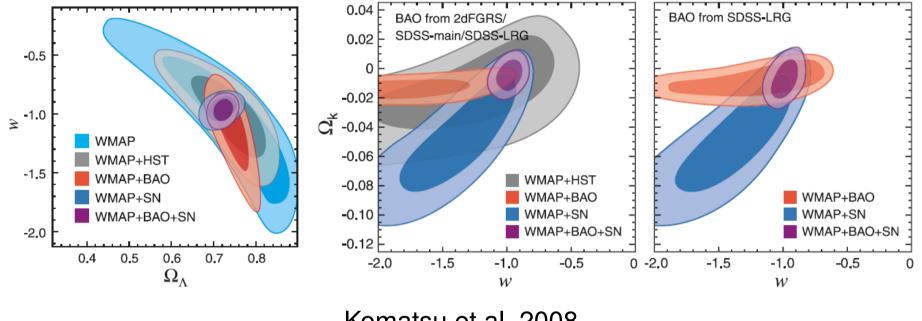
- Taking data:
 - BICEP/Robinson telescope (98 detectors; South Pole; 100, 150 GHz; 40 arcmin; $r \sim 0.1$)
- Undergoing integration:
 - Planck (56 pol. detectors; L2; 30–353 GHz; 5–33 arcmin; $r \sim 0.1$)
 - QUIET Phase I (110 receivers; Atacama; 40 & 90 GHz; 8 & 20 arcmin; $r \sim 0.05$)
- R&D/fabrication:
 - Clover (600 detectors; Atacama; 97, 150 & 220 GHz; 5–10 arcmin; $r \sim 0.02$)
 - EBEX (1320 detectors; LDB; 150, 220, 350 & 450 GHz; 2.7–8 arcmin; $r \sim 0.01$)
 - PolarBear (1200 detectors phase II; Atacama?; 90, 150 & 220 GHz; 3–7 arcmin; $r \sim 0.01$)
 - PAPPA (350 detectors phase III; LDB; 100, 200 & 300 GHz; 30 arcmin; $r \sim 0.01$)
 - SPIDER (2600 detectors; LDB; 96, 145, 225 & 275 GHz; 20–60 arcmin; r < 0.01)
 - QUIET Phase II (1000 receivers; Atacama; 40 & 90 GHz; 8 & 20 arcmin; $r \sim 0.01$)
- Design study?
 - EPIC (\sim 2000? detectors; L2; 30–300 GHz)
 - B-Pol ($\sim 10^4$? detectors; L2; 30–300 GHz)


GRAVITY WAVES IN THE CMB: INFORMATION CONTENT

Basic issues for B-mode polarimetry

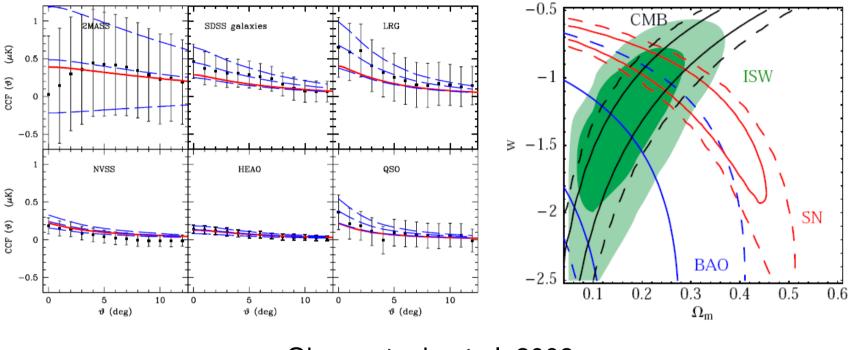

- Small signal r.m.s. primordial *B*-mode = $160\sqrt{r/0.2}$ nK requires many hundreds of background-limited detectors
- Instrumental and environmental systematic effects: informed design and build in redundancy and modulation
- Foreground contamination: target clean regions with multiple frequencies
- Data challenges: *E* and *B* separation for realistic surveys; few tens of TBs of data
- Confusion from non-linear effects: weak gravitational lensing important for $\Delta_P < 5 \,\mu {
 m K} \, {
 m arcmin}$

CLOVER SUMMARY



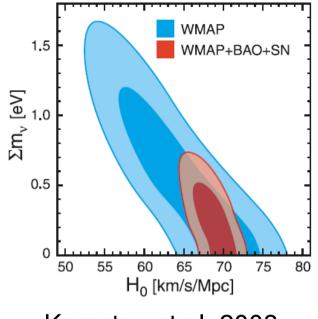
- Cardiff-Cambridge-Manchester-Oxford collaboration (+ NIST & UBC)
- Clean, highly-sensitive polarimetry ($\sim 5 \,\mu$ K-arcmin imaging at 97 GHz)
- 600 background-limited TES detectors
- Multiple levels of modulation (HWP, scanning and boresight rotation)
- Two instruments: one at 97 (7.5 arcmin); one with mixed focal plane at 150 and 225 GHz (5.5 arcmin)
- Two years observing from Atacama, Chile; commissioning from mid-2009

- Characterise B-mode polarization on scales 20 < l < 600
- Sensitivity to detect gravity waves down to $r \sim 0.02$ (c.f. current 95% limit of 0.2)
 - Hence measure energy scale of inflation if $> 1.2 \times 10^{16}~\text{GeV}$
- Place tight constraints on dynamics of inflation


DARK ENERGY AND THE CMB

Komatsu et al. 2008

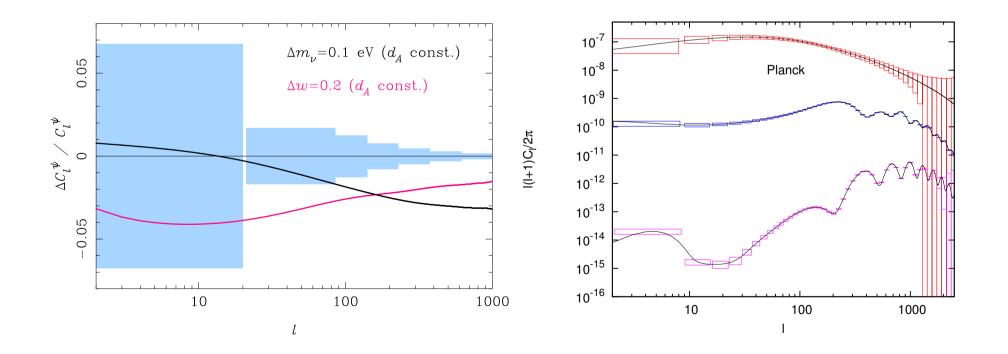
- Mainly affects CMB through $d_A(z_*)$
 - Break geometric degeneracy with external distance measures
 - -1.098 < w < -0.841 from WMAP5+SN(+BAO) in flat, constant-w models
 - -1.11 < w < -0.86 from WMAP5+SN+BAO in curved, constant-w models


LATE-TIME ISW

Giannantonio et al. 2008

- Positive correlation with LSS tracers to $z \sim 1$
- Combined analyses give $\sim 4\sigma$ detection (Giannantonio et al. 2008; Ho et al. 2008)
 - Hints (1–2 σ) of excess power cf. WMAP3 expectations
- Limited constraining power perfect correlation gives only $S/N \sim 10$

NEUTRINO MASSES AND CMB



Komatsu et al. 2008

- $\langle E_{\nu} \rangle = 0.58 \,\mathrm{eV}$ at last scattering
- Sub-eV neutrinos only affect CMB through d_A , late-time ISW and lensing
 - WMAP5 alone: $\sum_{\nu} m_{\nu} < 1.3 \text{ eV}$ for w = -1; $\sum_{\nu} m_{\nu} < 1.5 \text{ eV}$ for $w \neq -1$
 - WMAP5+BAO+SN: $\sum_{\nu} m_{\nu} < 0.61 \text{ eV}$ for w = -1; $\sum_{\nu} m_{\nu} < 0.66 \text{ eV}$ for $w \neq -1$
- Tighter constraints from e.g. CMB+Ly-α (∑_ν m_ν < 0.17 eV; Seljak et al. 2006) but systematic issues

FUTURE CONSTRAINTS ON DARK SECTOR

- $\Delta m_{\nu} = 0.04 \text{ eV}$ and $\Delta w = 0.2$ from CMB alone with future 'inflation probe' (Kaplinghat et al. 2003)
- Planck may achieve $\Delta m_{\nu} \sim 0.15 \,\mathrm{eV}$ (Lesgourges et al. 2006)
- Comparable precision to galaxy clustering and 1-Mpc scale Ly- α forest (but avoids issues of bias etc.)

SUMMARY

- CMB cleanest probe of primordial fluctuations down to scales $k^{-1} \sim 10 \, {
 m Mpc}$
 - 4×10^6 independent modes in total
- Simple inflation holding up well (flat universe with almost scale-invariant, adiabatic, almost Gaussian fluctuations) but some niggles:
 - Large-scale anisotropy? many models testable in Planck polarization
 - Too large non-Gaussianity? concensus not reached; awaits shape analysis with better data ($\Delta f_{NL} \sim 5$ from Planck) and higher moments
 - Large running? further small-scale CMB and better modelling of e.g. Ly- α forest
- Theory guiding us to more exotic phenomenology testable with upcoming data
 - Cosmic (super-)strings
 - Isocurvature modes
 - Measurable non-Gaussianity
 - "No" inflationary gravitational waves (though see Silverstein & Westphal 2008)