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Introduction

It is a fundamental problem in the theory of stellar pulsation
to examine the reaction of a star to a small perturbation.
We discuss (adiabatic) eigenmodes of spherically
symmetric stars. Particularly, we pay attention to what kinds
of eigenmodes exist and how they are classified
mathematically.
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Local waves in a star

In a non-rotating and non-magnetic star in a hydrostatic
equilibrium, the pressure gradient and the gravity are in balance,
each of which can be a restoring force of local waves.

restoring force type of waves frequency
pressure acoustic waves high
buoyancy (internal) gravity waves low

These two types of local waves are the main constituents of the
global eigenmodes.
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Radial modes

Constituent: acoustic waves

Sturm–Liouville problem
(with singular endpoints)

infinite number of discrete
eigenvalues
existence of the minimum
eigenvalue (ω2

0
)

eigenvalues are not
bounded from above
the eigenfunction that
corresponds to the n-th
eigenvalue (ω2

n) has n
nodes
...
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Nonradial modes under the Cowling approximation (1)

Buoyancy participates in the problem.
A fourth order system of ordinary differential equations
Cowling approximation [Cowling (1941)]:�� ��neglect of the perturbation to the gravitational field,

which is good
in the low density regions (envelope and atmosphere)
for short wavelength oscillations
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Nonradial modes under the Cowling approximation (2)

Once we accept the Cowling approximation, the problem is
simplified significantly.

A second order system of ordinary differential equations
Sturm–Liouville problems both in the high and low
frequency limits.
Eigenmodes are classified into three categories:

p modes (high frequency branch)
g modes (low frequency branch)
f modes (a single intermediate mode for a given spherical
degree) (only when the spherical degree ` ≥ 2)
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Nonradial modes under the Cowling approximation (3)

For models with mild central con-
densation,

modes constituents
p acoustic waves
g (internal) gravity waves
f surface gravity waves

the eigenfunction (the radial
displacement) of the n-th p
(g) mode has n nodes,
whereas that of the f mode
has no node.

Polytropic model with index 3, ` = 2

 1

 10

 100

0.0 0.5 1.0

ω
2

r/R

…

p2

p1

f

g1

g2

…

Masao Takata (University of Tokyo) Stellar eigenmode classification 21 June 2011 8 / 16



Nonradial modes under the Cowling approximation (4)

There is a problem.

In models with high central mass
concentration,

Some low order modes have
a gravity-wave character in
the core and an acoustic
wave character in the
envelope (mixed modes).
No simple relation between
the number of nodes of
eigenfunctions and the order
of eigenmodes.

Polytropic model with index 4, ` = 2
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Nonradial modes under the Cowling approximation (5)
Resolution: Eckart–Scuflaire–Osaki (ESO) scheme
(Eckart 1960; Scuflaire 1974; Osaki 1975)

A pair of components of eigenfunctions,
(
ξr, ξh

)
(the radial

and horizontal displacement).
Examine the trajectory of the point

(
ξr, ξh

)
as a function of

the radial distance from the centre (phase diagram).
acoustic wave

ξ r

ξ h

r

gravity wave

ξ h ξ r

r

acoustic-like osc. gravity-like osc.

ξ r

ξh

O
ξ r

ξh

O

•◦: p nodes •◦: g nodes
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Nonradial modes under the Cowling approximation (6)

ESO scheme (continued)

Each eigenmode is discriminated by the total net rotation
angle on the phase diagram.

A practical way of labelling each eigenmode:�� ��n(mode index) = [number of p nodes] - [number of g nodes]

Mode classification
n > 0: pn mode
n < 0: g|n| mode
n = 0: f mode
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Dipole modes (1)

There are still problems.

The Cowling approximation results in the dipolar f mode
with a non-zero frequency.
The ESO scheme has a problem, when it is applied to
dipole modes of stellar models with high central mass
concentration.
(Lee 1985; Guenther 1991; Christensen-Dalsgaard & Mullan
1994)

These are simply because the Cowling approximation is not
good for low order dipole modes (e.g. Christensen-Dalsgaard &
Gough 2001).
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Dipole modes (2)

Special treatment of dipole modes (Takata 2005, 2006)

A specific integral that comes from momentum
conservation.
A second order ordinary differential equation without the
Cowling approximation.
By suitably choosing the components of eigenfunctions, we
may construct a specific scheme of dipole-mode
classification.
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Higher degree modes (without the Cowling approximation) (1)

An unresolved problem

Practically speaking, the ESO scheme is sufficient for mode
classification, but...

Admitting the Cowling approximation means throwing away
the Poisson equation of the self-gravity.

Better insights into the full problem must be valuable,
particularly when we interpret highly precise observational
results obtained by MOST, COROT, Kepler etc.
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Higher degree modes (without the Cowling approximation) (2)

Why is the problem so hard?
The fourth order (linear) system of ordinary differential
equations is much less tractable.
A possibility of accidental degeneracy between
eigenmodes with the same spherical degree (although any
particular example has not been found so far).
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Summary

Radial oscillation is well understood, because it is a
classical Sturm–Liouville problem (with singular endpoints).
The Cowling approximation significantly simplifies the
analysis of nonradial modes. The scheme of mode
classification based on this (ESO scheme) works well,
except for low order dipole modes of equilibrium models
with high central mass concentration.
The problem of dipole-mode oscillations is resolved by
casting the differential equations of the full problem into a
form to which Eckart’s analysis can be applied.
The classification of higher degree modes without the
Cowling approximation is still an unresolved problem.
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