

Observations of Solar Waves and Oscillations With MDI and HMI

Jesper Schou

Stanford University

schou@sun.stanford.edu

Overview

- Observations
- Waves
- Modes
- Oscillations
- A Flow Result
- Something Else
- Conclusion

- MDI (1996-2011)
 - All the time: 200x200 pixels heavily apodized. Velocity only.
 - Part of the time: 1024x1024 unapodized. Sometimes Intensity.
- HMI (2010-???)
 - All the time: 4096x4096 unapodized. All variables.
- GONG (1995-???)
 - All the time: Roughly 800x800 unapodized. All variables.
- What we see in Doppler shift:
 - Solar differential rotation
 - Supergranulation
 - Granulation
 - p and f modes
 - Meridional circulation
- What we don't see
 - g modes
 - Other convection scales

Supergranular Waves

- Describe oscillations in terms of normal modes
- Horizontal dependence roughly given by spherical harmonics
 - Depend on degree I and azimuthal order m
 - Perturbed from spherical harmonics by asphericities
- Radial dependence given by eigenfunctions depending on structure
 - Depend on I and radial order n (number of nodes in radius)
 - Sensitive to sound speed and density
- Frequencies ω depend on I and n but not m for spherical Sun
 - Degeneracy broken by rotation and other asphericities
 - Equations can generally be linearized to give sensitivity, eg.

$$\omega_{nlm} - \omega_{nl} = \int K_{nlm}(r,\theta) \Omega(r,\theta) dr d\theta$$

- Where K is a known function of radius r and co-latitude θ and Ω is the rotation rate

- Analysis generally done in a standard series of steps
- Images are interpolated to grid in longitude and sin(latitude)
 - Gaps in images filled
 - Also remove solar rotation and apodize
- Remapped images are multiplied by spherical harmonics
 - Isolates modes kind of
- Time-series Fourier transformed
 - Gaps filled
 - Often turned into power spectra
- Spectra fit to find frequencies Aka. peakbagging
 - As well as amplitudes, linewidths, background power, ...
 - Frequencies are often expanded using so-called a-coefficients:

$$\frac{\omega_{nlm}}{2\pi} = v_{nlm} = v_{nl} + \sum_{j=1}^{J_{\text{max}}} a_j(n,l) P_j^l(m)$$

- Frequencies inverted to determine sound speed, rotation, etc.
- Papers published

Observed Power Spectra

Spectra have been averaged over m

Low Frequency Modes

SOHO14, 2004

Peakbagging

Modes With Error Bars

Overall scale measured to one part in 51e6.

Rotation Rate as a function of Radius and Latitude

Zonal flows from MDI (old) f modes

Outer 1%. Relative to smooth variation with latitude. +/- 9m/s.

Torsional Oscillations Looking Forward

Outer 1%. Relative to smooth variation with latitude. +/- 9m/s.

Near Polar Rotation

Zonal flows from MDI f modes

Outer 1%. Relative to smooth variation with latitude. +/- 9m/s.

Outer 1%. Relative to smooth variation with latitude. +/- 9m/s.

Data courtesy, R. Ulrich

Effective f-mode radius -430 $10^{6} \Delta R/R$ -440[fd2] -450HMI vw2HMIMDI (new) -460MDI (old) 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 $\omega_l \propto l^{1/2} R^{-3/2}$

Relative to standard solar model

٠

Eigenfunction Distortion

- Eigenfunctions are distorted to first order by meridional flow
 - Only second order for frequencies
 - Differential rotation perturbs both to first order
 - This results in additional "leaks" in the spectra
 - Real for differential rotation
 - Complex for meridional flow
 - Visible in cross-spectra

Differential Rotation

Meridional Flow

Differential Rotation

Delta l=2 cross spectra

m

Differential Rotation Result

Imaginary Part of Cross-Spectrum

-60

-5

0

5

Delta frequency (micro Hz)

10

15

20

Meridional Flow Models

Solid: sin (2*latitude) meridional flow

Dashed: Radial return flow

Meridional Flow Model 0

Model 0

Meridional Flow Model 1

Model 1

Meridional Flow Model 2

Second order/max= - 0.00760

Second order/max= -0.00181

Up to and including 2010

Conclusion

• The future looks bright!

- For helioseismology
- For DOG
 - Less so for JS