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• Observations

• Waves

• Modes

• Oscillations

• A Flow Result

• Something Else

• Conclusion
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• Conclusion



Observations

• MDI (1996-2011)

– All the time: 200x200 pixels heavily apodized. Velocity only.

– Part of the time: 1024x1024 unapodized. Sometimes Intensity.

• HMI (2010-????)

– All the time: 4096x4096 unapodized. All variables.

• GONG (1995-????)

– All the time: Roughly 800x800 unapodized. All variables.

• What we see in Doppler shift:
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• What we see in Doppler shift:

– Solar differential rotation

– Supergranulation

– Granulation

– p and f modes

– Meridional circulation

• What we don’t see

– g modes

– Other convection scales



Supergranular Waves

Spectroscopic rate

Small magnetic tracers
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Global Modes

• Describe oscillations in terms of normal modes

• Horizontal dependence roughly given by spherical harmonics

– Depend on degree l and azimuthal order m

– Perturbed from spherical harmonics by asphericities

• Radial dependence given by eigenfunctions depending on structure

– Depend on l and radial order n (number of nodes in radius)

– Sensitive to sound speed and density

• Frequencies ω depend on l and n but not m for spherical Sun
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• Frequencies ω depend on l and n but not m for spherical Sun

– Degeneracy broken by rotation and other asphericities

– Equations can generally be linearized to give sensitivity, eg.

– Where K is a known function of radius r and co-latitude θ and Ω is the rotation rate

∫ Ω=− θθθωω drdrrKnlmnlnlm ),(),(



Global Modes – Data Analysis

• Analysis generally done in a standard series of steps

• Images are interpolated to grid in longitude and sin(latitude)

– Gaps in images filled

– Also remove solar rotation and apodize 

• Remapped images are multiplied by spherical harmonics

– Isolates modes – kind of

• Time-series Fourier transformed 
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– Gaps filled

– Often turned into power spectra

• Spectra fit to find frequencies – Aka. peakbagging

– As well as amplitudes, linewidths, background power, ;

– Frequencies are often expanded using so-called a-coefficients:

• Frequencies inverted to determine sound speed, rotation, etc.

• Papers published
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Observed Power Spectra
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Spectra have been averaged over m



Observed and Model Spectra
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Low Frequency Modes
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SOHO14, 2004



Peakbagging
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Modes With Error Bars

Page 11 of 63 DOG2011, Gargano, Italy, June 22, 2011

Overall scale measured to one part in 51e6.



Rotation Rate as a function of Radius and Latitude
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Torsional Oscillations From MDI
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Outer 1%. Relative to smooth variation with latitude. +/- 9m/s.



Torsional Oscillations Looking Forward
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Outer 1%. Relative to smooth variation with latitude. +/- 9m/s.



Near Polar Rotation
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Torsional Oscillations From MDI (18 a-coeff.)
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Outer 1%. Relative to smooth variation with latitude. +/- 9m/s.



Torsional Oscillations Looking Back (18 a-coeff)
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Outer 1%. Relative to smooth variation with latitude. +/- 9m/s.



Zonal Flows (Torsional Oscillations) From Mt. Wilson
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Data courtesy, R. Ulrich



Effective Solar Radius
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2/32/1 −∝ Rllω
Relative to standard solar model



Eigenfunction Distortion

• Eigenfunctions are distorted to first order by meridional flow

– Only second order for frequencies

– Differential rotation perturbs both to first order

• This results in additional “leaks” in the spectra

– Real for differential rotation

– Complex for meridional flow

– Visible in cross-spectra
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Unperturbed Differential Rotation Meridional Flow



Differential Rotation

Delta l=2 cross spectra
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m

Frequency



Differential Rotation

n=0 m-averaged

Observed Model

m<0 l
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m>0
l



Differential Rotation Result
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Imaginary Part of Cross-Spectrum
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Differential Rotation

n=0 m-averaged

Observed Model

m<0 l
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m>0
l



Meridional Flow Models

Model 0

Model 1

Solid: sin (2*latitude) 

meridional flow

Dashed: Radial 

return flow
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Model 2



Meridional Flow Model 0
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Meridional Flow Model 1
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Meridional Flow Model 2
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JS vs. DOG
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Second order/max= - 0.00760 Second order/max= -0.00181

Up to and including 2010



Conclusion

• The future looks bright!

– For helioseismology

– For DOG

• Less so for JS
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