Helioseismology and the solar abundance problem

Katie Mussack

Los Alamos National Laboratory

The solar abundance problem can be attacked on several fronts

- Spectroscopic analysis determines atmospheric abundances
- New spectral measurements can be taken
- Solar models can be adapted to modify interior of model Suns
- Abundances can be inferred through seismology

Here:

- Attack on all fronts
- Focus on the role of seismology

Slide 2

Helioseismology was used to determine He abundance in the convection zone

Simple assumptions were used to model solar interior

- One-dimensional
- Initial homogeneous composition
- Negligible mass loss or accretion
- Neglect rotation and magnetic fields
- Simple surface boundary conditions
- No additional mixing or structural changes
 - convective overshoot
 - shear from differential rotation
 - meridional circulation
 - waves or oscillations

Asplund et al. 2005 lowered abundances

 Reanalyzed solar optical spectrum

Used updated techniques

- improved atomic physics
- 3D hydrodynamical model atmosphere
- Confidence in new analysis
 - Good agreement with observed line profiles and line bisectors
 - Different lines give similar abundances (ie: O)

	AG89	GN93	GS98	AGS05
С	8.56 ±0.04	8.55 ±0.05	8.52 ±0.06	8.39 ±0.05
Ν	8.05 ±0.04	7.97 ±0.05	7.92 ±0.06	7.78 ±0.06
ο	8.93 ±0.04	8.87 ±0.04	8.83 ±0.06	8.66 ±0.05
Ne	8.09 ±0.10	8.07 ±0.06	8.08 ±0.06	7.84 ±0.06
Z/X	0.0274 ±0.0016	0.0244 ±0.0014	0.0231 ±0.0018	0.0165 ± 0.0011

AG89 = Anders & Grevesse (1989) GN93 = Grevesse & Noels (1993) GS98 = Grevesse & Sauval (1998) AGS05 = Asplund, Grevesse, & Sauval (2005)

Lower abundances result in worse agreement with helioseismic constraints

What's the problem?

"Solar abundance problem"

• New abundances inconsistent with helioseismic constraints

"Solar model problem"

- Agreement with observed line profiles & bisectors
- Different lines give similar abundances
- Sun now similar to comparable neighbors
- Perhaps both models and abundances need to be refined

2008-2009: Intermediate abundance values proposed

Year	Source	Z	Z/X
1989	Anders & Grevesse	0.0201	0.0274
1993	Grevesse & Noels	0.0179	0.0244
1998	Grevesse & Sauval	0.0170	0.0231
2001, 2004	Holweger (compliled by Turck- Chièze et al. 2004)	0.0155	0.0210
2005	Asplund et al.	0.0122	0.0165
2009	Asplund et al.	0.0134	0.0181
2008, 2009	COBOLD	0.0154	0.0209

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

NATIONAL LABORATORY

EST.1943

Coronal X-ray measurements offer a potential solution

Measure neon abundance: Ne Kα line

- Coronal X-rays near temperature minimum
- Weak line, but isolated & unblended

Measure oxygen abundance: O Kα line

- Coronal X-rays just above temperature minimum
- Essentially uncontaminated & observable

Drawback: wait for observations

• Sensitive X-ray spectrometer needs to be funded and built

Drake & Ercolano, 2007 & 2008

Changes to solar models have been explored

- Opacities increase below CZ (11-20%)
- Abundances increase within uncertainty limits
- Ne abundance increase up to x3
- Diffusive settling increase at CZ base
- Evolution early accretion of lower Z material
- Tachocline mixing
- Various combinations

It is difficult to match both the new abundances and the helioseismic constraints for CZ He, CZ depth, and sound-speed profile.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 10

Some modifications improve sound-speed agreement

Accretion of low-Z material shows potential

Including mass loss in solar models can improve the agreement

Mass loss can improve sound-speed agreement and O-C frequencies

Mass-loss + intermediate abundances is even better

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

MS

Convective overshoot was proposed as a way to improve agreement

Model changes can be evaluated using sound-speed differences, O-C frequencies, and small separations

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Guzik & Mussack, 2010

Dynamic screening introduces a correction to p-p reaction rates in the solar core

NATIONAL LABORATORY

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Mussack & Dappen, 2011

Dynamic correction to screening improves sound-speed agreement in the solar core

Mass loss + dynamic screening may help

- Mass loss improves model below the base of the convection zone
- Dynamic screening correction improves model in the core
- Work in progress: combine mass loss and dynamic screening correction in a solar model (Suzannah Wood)

Dark matter may also improve agreement in the core

- Explored solar models with WIMP masses low enough and cross sections high enough to influence solar structure
- Included WIMPs in solar model by modifying the opacity
- Models rule out WIMP masses <10 GeV</p>

Abundance can also be inferred using seismology

Total Z and individual abundances can be evaluated through the ionization bumps in W and Θ

EFF Models at 4.6Gy

Seismic inversion can be used to evaluate models with different abundances

Calibrate abundances in models to match solar W

Where are we now?

- Intermediate abundance values are more agreeable
 - COBOLD, 2008-2009: Z = 0.0154
 - AGSS, 2009: Z = 0.0134
- Modifications of solar models make some improvement in agreement
 - Mass loss
 - Accretion
- Further investigation is needed
 - Seismic determination of abundances in the CZ
 - Models with mass loss + dynamic screening or dark matter
 - Other adjustments to models
 - Data from solar atmosphere

Slide 24

Douglas continues to influence seismic investigations of abundances

- "Sources of uncertainty in direct seismological measurements of the solar helium abundance", Kosovichev, Christensen-Dalsgaard, Däppen, Dziembowski, Gough, Thompson, 1992
- "On the influence of treatment of heavy elements in the equation of state on the resulting values of the adiabatic exponent", Däppen, Gough, Kosovichev, Rhodes, 1993
- "On the composition of the solar interior", Gough, 1998
- "The Sun is not severely deficient in Heavy Elements", Christensen-Dalsgaard & Gough, 2004
- "Effect of He ionization on stellar eigenfrequencies", Houdek & Gough, 2004
- "Asteroseismic signature of He ionization", Houdek & Gough, 2007

Thank you Katie Mussack

Los Alamos National Laboratory, XTD-2

mussack@lanl.gov

