

Jørgen Christensen-Dalsgaard Department of Physics and Astronomy

Aarhus University

Notable successes

6

Kepler

Launched March 2009

Goals of Kepler asteroseismology

- to provide support for the studies of extrasolar planetary systems by characterizing the central stars of the systems
- to perform in-depth asteroseismic investigations of a large number of stars, predominantly but not exclusively those showing solar-like oscillations.

Kepler launch

7 March 2009

Basic properties of oscillations

Behave like spherical harmonics $Y_l^m(\theta, \phi) e^{-i\omega t} \sim P_l^m(\cos \theta) \cos(m\phi - \omega t)$ $k_{\rm h} = 2\pi/\lambda = \sqrt{l(l+1)}/R$

Types of stellar oscillations

- Acoustic modes (p modes)
 - Standing sound waves
 - Relatively high frequency
 - Depend mainly on sound speed
 - Extend to centre of star, at low degree
- g modes
 - Standing internal gravity waves
 - Relatively low frequency
 - Depend mainly on the buoyancy frequency, strongly sensitive to composition profile

Subdwarf B stars

- Extreme horizontal branch stars, very thin envelope
- Core helium burning
- Two types of pulsating sdB stars:
 - Short-period (V362 Hya stars): 100 600 s
 - Long-period (V1093 Her stars): 1 2 h
- 14 found with Kepler, almost all long period

Kepler survey

Østensen et al. (2011; MNRAS, in the press)

g modes in a subdwarf B star

Reed et al. (2010; MNRAS 409, 1496)

Fit to observed periods

Van Grootel et al. (2010; ApJ 718, L97)

Ctallar				
Stellar	Quantity	Estimated Value		
parameters	$T_{\rm eff}$ (K)	27730 ± 270^{a}		
		28050 ± 470^{b}		
	$\log g$	5.552 ± 0.041^{a}		
^a From spectroscopy		5.52 ± 0.03^{b}		
	M_*/M_{\odot}	0.496 ± 0.002		
	$\log(M_{\rm env}/M_*)$	-2.55 ± 0.07		
	$\log(1 - M_{\rm cc}/M_*)$	-0.37 ± 0.01		
	$M_{\rm cc}/M_{\odot}$	0.28 ± 0.01		
	$X_{\rm core}(C+O)$	0.261 ± 0.008		
bp	Age (Myr)	$18.4 \pm 1.0^{\circ}$		
^b From asteroseismology	$R/R_{\odot}(M_*,g)$	0.203 ± 0.007		
^c Since Zero-Age EHB	L/L_{\odot} ($T_{\rm eff}, R$)	22.9 ± 3.1		
	$M_V(g, T_{\rm eff}, M_*)$	4.21 ± 0.11		
Van Croatal at al. (2010:	E(B-V)	0.094 ± 0.017		
ApJ 718, L97)	$d(V, M_V)$ (pc)	1180 ± 95		

Asymptotics of p modes

$$\nu_{nl} \sim \Delta \nu \left(n + \frac{l}{2} + \alpha \right) + \epsilon_{nl}$$

where

$$\Delta \nu = \left[2 \int_0^R \frac{\mathrm{d}r}{c} \right]^{-1}$$

 $\alpha = \alpha(\nu)$ depends on surface properties.

Large frequency separation:

$$\Delta
u_{nl} =
u_{nl} -
u_{n-1\,l} \simeq \Delta
u$$

Large frequency separation:

$$\Delta \nu_{nl} = \nu_{nl} - \nu_{n-1\,l} \simeq \Delta \nu \propto \langle \rho \rangle^{1/2} \propto (M/R^3)^{1/2}$$

A prediction

TABLE III

Properties of oscillations of envelope models. The relation between mass and luminosity is derived from Iben's (1964) evolution calculations. The notation is as in Table I.

M/M_{\odot}	L/L_{\odot}	$T_{\rm eff}$	$\frac{v_{s,\max}}{(\mathrm{km}\ \mathrm{s}^{-1})}$	$(\delta L_s/L_s)_{\rm max}$	П _{max} (days)	⊿ν (μHz)
5	10 ³	6800	0.014	1.1×10^{-4}	0.32	2.65
-	_	5770	0.015	1.7×10^{-4}	0.56	1.82
-	-	5000	0.021	3.1×10^{-4}	3.5	1.13
-	_	4500	0.015	3.6×10^{-4}	1.2	0.75

It is worth pointing out that observations of this type of oscillations might also be useful in the study of stellar convection. The calculation of the oscillation amplitudes resulting from a given convective velocity field is probably considerably simpler than a direct computation of the convective velocities.

Christensen-Dalsgaard & Frandsen (1983; Proc. 66th IAU Colloq., eds Gough & Toomre, Solar Phys. 82, 469)

Nonradial oscillations in red giants

 $\nu_{\rm max} \propto M R^{-2} T_{\rm eff}^{-1/2}$

De Ridder et al. (2009; Nature 459, 398) CoRoT observations

A HR diagram in terms of ν_{max}

Huber et al. (2010)

Diagnostics of stellar global properties

• From

$$\Delta \nu_{nl} \propto (M/R^3)^{1/2}$$

$$\nu_{\rm max} \propto M R^{-2} T_{\rm eff}^{-1/2}$$

- and observed T_{eff} determine
- M and R
- With modelling, determine in addition
- age

Basu et al. (2011; ApJ 729, L10)

Kepler open clusters

Basu et al. (2011; ApJ 729, L10)

Kepler open clusters

Basu et al. (2011; ApJ 729, L10)

BREVIA

Kepler Detected Gravity-Mode Period Spacings in a Red Giant Star

P. G. Beck, ¹* T. R. Bedding, ² B. Mosser, ³ D. Stello, ² R. A. Garcia, ⁴ T. Kallinger, ⁵ S. Hekker, ^{6,7} Y. Elsworth, ⁶ S. Frandsen, ⁷ F. Carrier, ¹ J. De Ridder, ¹ C. Aerts, ^{1,9} T. R. White, ² D. Huber, ² M.-A. Dupret, ¹⁰ J. Montalbán, ¹⁰ A. Miglio, ¹⁰ A. Noels, ¹⁰ W. J. Chaplin, ⁶ H. Kjeldsen, ⁸ J. Christensen-Dalsgaard, ⁸ R. L. Gilliland, ¹¹ T. M. Brown, ¹² S. D. Kawaler, ¹³ S. Mathur, ¹⁴ J. M. Jenkins¹⁵

> Beck et al. Science (2011; 332, 205)

Kepler observations

Beck et al. (2011; Science 332, 205)

Mode trapping

Two types of modes in one star

An sdB star in the core of a red giant

sdB star in the core of the red giant

© Pieter Degroote, K.l

g-mode period spacings

$$P_n = \frac{\Pi_0}{L}(n+\epsilon)$$
, $L = \sqrt{l(l+1)}$

$$\Pi_0 = 2\pi^2 \left(\int_{r_1}^{r_2} N \frac{\mathrm{d}r}{r} \right)^{-1}$$

1 M-, 8 L-

Asymptotic ¢ ¦₁ 1 M–

doi:10.1038/nature09935

Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars

Timothy R. Bedding¹, Benoit Mosser², Daniel Huber¹, Josefina Montalbán³, Paul Beck⁴, Jørgen Christensen-Dalsgaard⁵, Yvonne P. Elsworth⁶, Rafael A. García⁷, Andrea Miglio^{3,6}, Dennis Stello¹, Timothy R. White¹, Joris De Ridder⁴, Saskia Hekker^{6,8}, Conny Aerts^{4,9}, Caroline Barban², Kevin Belkacem¹⁰, Anne-Marie Broomhall⁶, Timothy M. Brown¹¹, Derek L. Buzasi¹², Fabien Carrier⁴, William J. Chaplin⁶, Maria Pia Di Mauro¹³, Marc-Antoine Dupret³, Søren Frandsen⁵, Ronald L. Gilliland¹⁴, Marie-Jo Goupil², Jon M. Jenkins¹⁵, Thomas Kallinger¹⁶, Steven Kawaler¹⁷, Hans Kjeldsen⁵, Savita Mathur¹⁸, Arlette Noels³, Victor Silva Aguirre¹⁹ & Paolo Ventura²⁰

Bedding et al. (Nature, 2011, 471, 608)

Red-giant model

Bedding et al. (Nature, 2011, 471, 608)

Kepler observations

Bedding et al. (Nature, 2011, 471, 608)

2.5 M- evolution

Buoyancy frequencies

CoRoT, Kepler, SONG, PLATO,

The fun is just starting!

