

On the seismic age and heavy-element abundance of the Sun

submitted to MNRAS

Günter Houdek

In collaboration with Douglas Gough

DOG Fest – Gargano – June 2011

Asteroseismic ($\Delta v, \delta v$) diagram

Asteroseismic ($\Delta v, \delta v$) diagram

- match seismic signatures of theoretical frequencies to observed frequencies.
- signatures are chosen to reflect principally the properties of energy-generating core.
- but such core signatures are also susceptible to e.g. zero-age chemical abundances and are contaminated by contributions produced by the surface layers.
- we need additional diagnostic to measure abundance (e.g., helium) independently and to separate the surface from the core signatures.
- here we use abrupt variation of the first adiabatic exponent γ_1 induced by He ionization.

-asymptotic p-mode frequency behaviour (*n*>>*l*): $[L^2 = l(l+1)]$

$$\nu \simeq (n + \frac{1}{2}l + \epsilon)\nu_0 - \frac{AL^2 - B}{\nu}\nu_0^2 \qquad A = \frac{1}{4\pi^2\nu_0} \left[\frac{c(R)}{R} - \int_0^R \frac{1}{r}\frac{dc}{dr}dr\right]$$

- evolutionary computations depend on 3 initial parameters: e.g., Y_0 , Z_0 and α_c

- Calibrated (L, R) models: e.g. $Z_0(Y_0, \alpha_c)$ @ any $t_{\odot} \rightarrow 2$ -parameter set of models (Z_0, t_{\odot})

-asymptotic p-mode frequency behaviour (*n*>>*l*): $[L^2 = l(l+1)]$

$$\nu \simeq (n + \frac{1}{2}l + \epsilon)\nu_0 - \frac{AL^2 - B}{\nu}\nu_0^2 \qquad \qquad A = \frac{1}{4\pi^2\nu_0} \left[\frac{c(R)}{R} - \int_0^R \frac{1}{r}\frac{dc}{dr}dr\right]$$

- evolutionary computations depend on 3 initial parameters: e.g., Y_0 , Z_0 and α_c
- Calibrated (L, R) models: e.g. $Z_0(Y_0, \alpha_c)$ @ any $t_{\odot} \rightarrow 2$ -parameter set of models (Z_0, t_{\odot})

-asymptotic p-mode frequency behaviour (n>>l): $[L^2 = l(l+1)]$ $\nu \simeq (n + \frac{1}{2}l + \epsilon)\nu_0 - \frac{AL^2 - B}{\nu}\nu_0^2 - \frac{CL^4 - DL^2 + E}{\nu^3}\nu_0^4 - \frac{FL^6 - GL^4 + HL^2 - I}{\nu^5}\nu_0^6$

-asymptotic p-mode frequency behaviour (*n*>>*l*):

$$\nu_{\rm s} \simeq (n + \frac{1}{2}l + \epsilon)\nu_0 - \frac{AL^2 - B}{\nu_{\rm s}}\nu_0^2 - \frac{CL^4 - DL^2 + E}{\nu_{\rm s}^3}\nu_0^4 - \frac{FL^6 - GL^4 + HL^2 - I}{\nu_{\rm s}^5}\nu_0^6$$

Gough (2011):
$$A = \frac{-1}{2\omega_0} \left(\int_0^{r_\star} \frac{1}{r} \frac{\mathrm{d}c}{\mathrm{d}r} \,\mathrm{d}r + \mathrm{other term} \right)$$

$$C = \frac{1}{24\omega_0^3} \left[\int_0^{r_\star} \frac{1}{r} \frac{\mathrm{d}}{\mathrm{d}r} \left(\frac{1}{r} \frac{\mathrm{d}c^3}{\mathrm{d}r} \right) \,\mathrm{d}r \,+\,\mathrm{other\,term} \right]$$

$$F = \frac{-1}{240\omega_0^5} \left\{ \int_0^{r_\star} \frac{1}{r} \frac{\mathrm{d}}{\mathrm{d}r} \left[\frac{1}{r} \frac{\mathrm{d}}{\mathrm{d}r} \left(\frac{1}{r} \frac{\mathrm{d}c^5}{\mathrm{d}r} \right) \right] \,\mathrm{d}r + \text{other term} \right\}$$

integrands of $\mathcal{A}_{\alpha} = \mathbf{A}, \mathbf{C}, F$: $\simeq \frac{(-1)^{\alpha}}{(2\alpha - 1)2^{\alpha}\alpha!} \left(\frac{1}{r}\frac{\mathrm{d}}{\mathrm{d}r}\right)^{\alpha} \left(\frac{c}{\nu_{0}}\right)^{2\alpha - 1}$ + other term(s) $\alpha = 1, 2, 3$

make integrands independent of ν_0 : $\widehat{\mathcal{A}}_{\alpha} := \nu_0^{2\alpha-1} \mathcal{A}_{\alpha}$

$$\longrightarrow \qquad \widehat{A} = \nu_0 A \,, \qquad \widehat{C} = \nu_0^3 C \,, \qquad \widehat{F} = \nu_0^5 F$$

-asymptotic p-mode frequency behaviour (*n*>>*l*):

$$\nu_{\rm s} \simeq (n + \frac{1}{2}l + \epsilon)\nu_0 - \frac{AL^2 - B}{\nu_{\rm s}}\nu_0^2 - \frac{CL^4 - DL^2 + E}{\nu_{\rm s}^3}\nu_0^4 - \frac{FL^6 - GL^4 + HL^2 - I}{\nu_{\rm s}^5}\nu_0^6$$

- calibration using combinations of the seismically determined parameters

$$\xi_{\alpha} = (\widehat{A}, \widehat{C}, \widehat{F}, \underbrace{?}_{i}), \qquad \alpha = 1, 2, 3, 4, \qquad \widehat{A} = \nu_0 A,$$

age X_i
 $\widehat{C} = \nu_0^3 C,$
 $\widehat{F} = \nu_0^5 F$

-asymptotic p-mode frequency behaviour (*n*>>*l*):

$$\nu_{\rm s} \simeq (n + \frac{1}{2}l + \epsilon)\nu_0 - \frac{AL^2 - B}{\nu_{\rm s}}\nu_0^2 - \frac{CL^4 - DL^2 + E}{\nu_{\rm s}^3}\nu_0^4 - \frac{FL^6 - GL^4 + HL^2 - I}{\nu_{\rm s}^5}\nu_0^6$$

- calibration using combinations of the seismically determined parameters

$$\begin{split} \xi_{\alpha} &= (\widehat{A}, \widehat{C}, \widehat{F}, -\underline{\delta\gamma_1/\gamma_1}), \qquad \alpha = 1, 2, 3, 4, \qquad \qquad \widehat{A} = \nu_0 A, \\ \mathbf{age} \quad \mathbf{Y} \quad -\delta\gamma_1/\gamma_1 \propto Y \quad \qquad \widehat{C} = \nu_0^3 C, \\ \widehat{F} &= \nu_0^5 F \end{split}$$

- asymptotic formula approximates adiabatic v_s only if scale height $H \gg k_v^{-1}$

 \longrightarrow glitch-free v_s are frequencies of a "smoothed" stellar model

we need a diagnostics for the acoustic glitch contributions to estimate $-\delta\gamma_1/\gamma_1$ and to construct v_s

Glitch contributions
$$\delta
u =
u -
u_{
m s}$$
 (for $H \ll k_v^{-1}$)

Glitch contributions

$$\delta \nu = \nu - \nu_{\rm s}$$

Gough (1990):

Glitch contributions

$$\delta \nu = \nu - \nu_{\rm s}$$

A model for glitch contributions (A seismic diagnostics) Seismic diagnostics: variational principle in (nonrotating) stars

Linearized, adiabatic, wave equation:

$$\omega^2 \boldsymbol{\xi} = \mathcal{L}(\boldsymbol{\xi})$$

operator $\rho_0 \mathcal{L}$ is hermitian for $\nabla p_0 = 0$ at boundary:

$$\omega^{2} = \frac{\int_{V} \rho_{0} \boldsymbol{\xi}^{*} \cdot \mathcal{L}(\boldsymbol{\xi}) \, \mathrm{d}V}{\int_{V} \rho_{0} \boldsymbol{\xi}^{*} \cdot \boldsymbol{\xi} \, \mathrm{d}V} = \frac{\mathcal{K}}{I}$$

$$\mathcal{K} \simeq \int_{V} (\mathcal{K}_{1} + \mathcal{K}_{2} + \mathcal{K}_{3} + \mathcal{B}) \,\mathrm{d}V \simeq \int_{V} \mathcal{K}_{1} \,\mathrm{d}V = 4\pi \int c^{2} \rho (\mathrm{div}\boldsymbol{\xi})^{2} r^{2} \,\mathrm{d}r$$

Seismic diagnostics

we approximate:

$$\delta\omega \simeq \frac{\delta_{\gamma}\mathcal{K}}{2\omega I}$$
 with $\delta_{\gamma}\mathcal{K} = \int (\delta\gamma_1) p(\operatorname{div}\boldsymbol{\xi})^2 r^2 \,\mathrm{d}r$

asymptotic limit (JWKB):

$$(\operatorname{div}\boldsymbol{\xi})^2 = \left(\frac{\delta p}{\gamma_1 p}\right)^2 \simeq \frac{\pi\omega^3}{\gamma_1 p c r^2 \kappa} |x|^{1/2} |\operatorname{Ai}(-x)|^2$$

$$\delta_{\gamma} \mathcal{K} \simeq \pi \omega^3 \int \kappa^{-1} \frac{\delta \gamma_1}{\gamma_1} |x|^{1/2} |\operatorname{Ai}(-x)|^2 d\tau$$

$$I = \int_0^T \rho \, \boldsymbol{\xi} \cdot \boldsymbol{\xi} \, r^2 \, \mathrm{d}r \simeq \frac{1}{2} \omega T - \frac{1}{4} (m+1) \pi$$

and

Seismic diagnostics

Squared adiabatic sound speed $c^2 = \gamma_1 p / \rho$ $\gamma_1 = (\partial \ln p / \partial \ln \rho)_s$

Expand γ with respect to Y about Y= 0: $\gamma \simeq (\gamma)_{Y=0} + (\partial \gamma / \partial Y)_{Y=0} Y$. Glitches may then be written: $\delta \gamma \simeq (\partial \gamma / \partial Y)_{Y=0} Y$

Seismic diagnostics

Seismic diagnostic

 $\delta_{\rm s}\nu \simeq \hat{A} + \hat{B}\nu + \left[a_0\nu^2/2 + a_1\nu(\ln\nu - 1) - a_2\ln\nu + a_3/2\nu\right]/h^2 \dots \text{Surface}$ (H, ---_{ad})

$$x = f(\omega\tau, \epsilon, m) \qquad \qquad \psi_{c} = f(\omega\tau_{c}, \epsilon_{c}) \qquad \qquad h = (\nu_{n+1} - \nu_{n-1})/2$$

Seismic diagnostics: surface term $\delta_{\rm s} \nu$

 $\delta_{\rm s}\nu \equiv \Delta_2^{-1} \sum a_k \nu^{-k}$ $\simeq \tilde{A} + \tilde{B}\nu + \left[a_0\nu^2/2 + a_1\nu(\ln\nu - 1) - a_2\ln\nu + a_3/2\nu\right]/h^2$ \tilde{A} and \tilde{B} are two undetermined constants of summation of 3rd - order polynomial Choose \tilde{A} and \tilde{B} by minimizing: $E \equiv ||\delta_s \nu||_2 = \sum (\tilde{A} + \tilde{B} \nu + F_s)^2$ 10 BiSON data (Basu, Chaplin et al. 2007) + l = 0 $\delta_{
m s}
u_{
m (\mu Hz)}$ * -5-101500 2000 3000 1000 2500 3500 4000 Frequency (μ Hz)

Applying the seismic diagnostic to the Sun and simulated data (SONG)

Applying the seismic diagnostic to low-degree p modes: Sun

Applying the seismic diagnostic to a solar-like star

or model:
).062
$792\mathrm{s}$
$2330\mathrm{s}$

Applying the seismic diagnostic to a solar-like star

Results for SONG data:	for model :	:
$-\delta\gamma_1/\gamma_1 _{\tau_{\rm II}} = 0.086$	0.062	
$ au_{ m II}=818{ m s}$	$792\mathrm{s}$	
$\tau_{\rm c} = 2402{\rm s}$	$2330\mathrm{s}$	

$$\gamma_1 = \left(\partial \ln p / \partial \ln \rho\right)_s$$

- $-\delta\gamma_1/\gamma_1|_{\tau_{\rm II}}~\dots$ rel. depression of $~\gamma_1$ in He II ionization zone
 - τ_{II} ... acoustic depth of HeII ionization zone
 - $\mathcal{T}_{\mathbf{C}}$... acoustic depth of bottom of convection zone

-asymptotic p-mode frequency behaviour (*n*>>*l*):

$$\nu_{\rm s} \simeq (n + \frac{1}{2}l + \epsilon)\nu_0 - \frac{AL^2 - B}{\nu_{\rm s}}\nu_0^2 - \frac{CL^4 - DL^2 + E}{\nu_{\rm s}^3}\nu_0^4 - \frac{FL^6 - GL^4 + HL^2 - I}{\nu_{\rm s}^5}\nu_0^6$$

- calibration using combinations of the seismically determined parameters

$$\xi_{\alpha} = (\widehat{A}, \widehat{C}, \widehat{F}, -\underbrace{\delta\gamma_{1}/\gamma_{1}}_{\mathbf{Y}}), \qquad \alpha = 1, 2, 3, 4, \qquad \widehat{A} = \nu_{0}A, \\ \widehat{C} = \nu_{0}^{3}C, \\ \widehat{F} = \nu_{0}^{5}F$$

- approximate solar value ξ_{α}^{\odot} by a two-term expansion about reference value ξ_{α}^{r}

$$\boldsymbol{\xi}_{\alpha}^{\odot} = \boldsymbol{\xi}_{\alpha}^{\mathbf{r}} + \left(\frac{\partial \boldsymbol{\xi}_{\alpha}}{\partial t_{\odot}}\right)_{Z} \Delta t + \left(\frac{\partial \boldsymbol{\xi}_{\alpha}}{\partial Z}\right)_{t_{\odot}} \Delta Z - \boldsymbol{\epsilon}_{\boldsymbol{\xi}\alpha} \,.$$

- and the solution is:
$$\begin{array}{c} t_{\odot} = t_{\mathrm{ref}} + \Delta t \\ Z_{\odot} = Z_{\mathrm{ref}} + \Delta Z \end{array}$$
from reference model

Eleven models calibrated to solar luminosity and radius

 $\left[\partial(-\delta\gamma_1/\gamma_1)/\partial Z\right]_{t_{\odot}}$ $(\partial C/\partial Z)_{t_{\odot}}$ $[\partial(-\delta\gamma_1/\gamma_1)/\partial t_{\odot}]_Z$ $(\partial A/\partial t_{\odot})_Z$ $(\partial A/\partial Z)_{t_{\odot}}$ $(\partial C/\partial t_{\odot})_Z$ 0.770-0.006180.404-0.0465-1.67124.2-0.7327-0.10671.771 0.231 -0.60740.1634 $\left(\frac{\partial\nu_0}{\partial Z}\right)_{t_\odot}$ $\left(\frac{\partial\nu_0}{\partial t_\odot}\right)_{Z_0}$ $\left(\frac{\partial F}{\partial t_{\odot}}\right)_{Z_0}$ $\frac{\partial F}{\partial Z}$ -72.6618.622310.64690.02203 $\partial \ln \alpha / \partial \ln \beta$ -0.0099731.057 0.5391

partial derivatives

Partial derivatives $H_{\alpha i}$ obtained from two sets of calibrated evolutionary models for the Sun. Values with respect to age t_{-} are in units of Gy⁻¹, and frequencies are in μ Hz.

-asymptotic p-mode frequency behaviour (*n*>>*l*):

$$\nu_{\rm s} \simeq (n + \frac{1}{2}l + \epsilon)\nu_0 - \frac{AL^2 - B}{\nu_{\rm s}}\nu_0^2 - \frac{CL^4 - DL^2 + E}{\nu_{\rm s}^3}\nu_0^4 - \frac{FL^6 - GL^4 + HL^2 - I}{\nu_{\rm s}^5}\nu_0^6$$

- calibration using combinations of the seismically determined parameters

$$\xi_{\alpha} = (\widehat{A}, \widehat{C}, \widehat{F}, -\delta\gamma_1/\gamma_1), \qquad \alpha = 1, 2, 3, 4, \qquad -\delta\gamma_1/\gamma_1 \propto Y$$

ξ_{lpha}	t_{\odot} (Gy)	Z_0	Y_0		t_{\odot} (Gy)	Z_0	Y_0
$\hat{A}, \hat{C}, \hat{F}, -\delta\gamma_1/\gamma_1$	4.592	0.0156	0.252	Π	4.597	0.0155	0.251
$\hat{A}, \hat{F}, -\delta\gamma_1/\gamma_1$	4.580	0.0157	0.252		4.582	0.0156	0.251
$\hat{C}, \hat{F}, -\delta\gamma_1/\gamma_1$	4.591	0.0157	0.252		4.595	0.0155	0.251
$\hat{A}, \hat{C}, -\delta\gamma_1/\gamma_1$	4.597	0.0160	0.254		4.603	0.0160	0.253
\hat{A},\hat{C},\hat{F}	4.619	0.0153	0.252		4.632	0.0151	0.248
\hat{A},\hat{C}	4.638	0.0147	0.246		4.654	0.0143	0.245

Referenz model 0: 4.60 Gy, *Z*₀=0.02 Referenz model 2: 4.37 Gy, *Z*₀=0.02

-asymptotic p-mode frequency behaviour (*n*>>*l*):

$$\nu_{\rm s} \simeq (n + \frac{1}{2}l + \epsilon)\nu_0 - \frac{AL^2 - B}{\nu_{\rm s}}\nu_0^2 - \frac{CL^4 - DL^2 + E}{\nu_{\rm s}^3}\nu_0^4 - \frac{FL^6 - GL^4 + HL^2 - I}{\nu_{\rm s}^5}\nu_0^6$$

- calibration using combinations of the seismically determined parameters

$$\xi_{\alpha} = (\widehat{A}, \widehat{C}, \widehat{F}, -\delta\gamma_1/\gamma_1), \qquad \alpha = 1, 2, 3, 4, \qquad -\delta\gamma_1/\gamma_1 \propto Y$$

ξ_{lpha}	t_{\odot} (Gy)	Z_0	$C_{\Theta 11}^{1/2}$	$-(-\mathrm{C}_{\Theta12})^{1/2}$	$C_{\Theta 22}^{1/2}$	
$\hat{A}, \hat{C}, \hat{F}, -\delta\gamma_1/\gamma_1$ $\hat{A}, \hat{F}, -\delta\gamma_1/\gamma_1$	$4.592 \\ 4.580$	$0.0156 \\ 0.0157$	$0.039 \\ 0.045$	$0.0013 \\ 0.0016$	0.0005 0.0006	
$\hat{C}, \hat{F}, -\delta\gamma_1/\gamma_1$	4.591	0.0157	0.044	0.0004	0.0005	
$\hat{A}, \hat{C}, -\delta\gamma_1/\gamma_1$	4.597	0.0160	0.045	0.0036	0.0008	
\hat{A},\hat{C},\hat{F}	4.619	0.0153	0.095	0.0104	0.0013	
\hat{A}, \hat{C}	4.638	0.0147	1.049	0.1791	0.0306	

Referenz model 0: 4.60 Gy, *Z*₀=0.02

error co-variance matrix

Note: Model S: age=4.60 Gy, Z₀=0.0196

Results for <u>five-times calibrated</u> reference models using BiSON data & $(\widehat{A}, \widehat{C}, \widehat{F}, -\delta\gamma_1/\gamma_1)$

-	Reference model	t_{\odot} (Gy)	Z_0	Y_0
\bigcirc	$4.60 \text{ Gy}/Z_0 = 0.02$	4.604	0.0155	0.250
2	$4.37 \text{ Gy}/Z_0 = 0.02$	4.603	0.0155	0.250

Note: Model S: age = 4.60 Gy, $Z_0 = 0.0196$

	$Z_{ m s}$	$Z_{\rm s}/X_{\rm s}$
Caffau et al. (2009)	$0.0156{\pm}0.0011$	0.0213
Houdek & Gough (2011)	$0.0142{\pm}0.0005$	0.0186
Asplund et al. (2009)	0.0134	0.0181

Five-times calibrated reference model $X_{\rm s} = 0.7618$ $Y_{\rm s} = 0.2240$ $Z_{\rm s} = 0.0142$

Summary/conclusion

- Seismic diagnostics (2nd frequency differences) of low-degree modes can be used to estimate gross properties (Y, DCZ) of solar-type stars.
- Removing the seismic signature of rapid variations in the background state from the frequencies could substantially improve the calibration of stellar ages and abundances.
- This seismic calibration procedure can be applied to data from CoRoT, Kepler and planned observing campaigns (PLATO, SONG).
- The values of Z should not be regarded strictly as statements for initial heavy-element abundance, but rather as a measure of the opacity in the radiative interior.

Happy anniversary Douglas

and

Thank you for the delightful collaboration over the last years, for your contagious joy of thinking, your advice and help and above all for your friendship.