A review of disk obervations

Antonella Natta

Porto, Sept.18-23, 2006

Physical Processes in Circumstellar Disks around Young Stars

2

Porto, Sept.18-23, 2006

around Young Stars

Why CO seems bigger than dust?

CO mm lines are brighter than dust continuum (much more optically thick)

Other molecules/isotopes have weaker lines→ disks will look smaller than in the continuum

Physical Processes in Circumstellar Disks around Young Stars

How to proceed if you have data from mm interferometers?
 mm interferometers have sufficient coverage of the UV plane to allow image reconstruction
★ But it is much safer to compare observations to model predictions in the UV plane, i.e., one needs to compute model-predicted intensity maps and "observe" them with the same setup as the data
 From a χ2 analysis, one can check the capability of models to reproduce the observations and constrain model parameters
- S_{disk} - Surface density profile $\Sigma(R)$
— Inclination and PA
Physical Processes in Circumstellar Disks

Porto, Sept.18-23, 2006

hysical Processes in Circumstellar Disks around Young Stars

19

Pre-MS disks are big

DM Tau	0.5 Msun	850 AU
GM Aur	0.8 Msun	500 AU
LkCa15	1 Msun	500-600 AU
MWC 480	2 Msun	450 AU
HD163296	2.4 Msun	550 AU
AB Aur	2.3 Msun	1000 AU
HD 34282	2 Msun	800 AU

Structures in disks: AB Aur SMA, 850 mic continuum (contours) PdB, dust 1.4mm continuum = 144 AU mic structure Fig. 1.— Left: Dust concaring with proval weighing superposed on the Subaru near-IR image. The anguar resolution is 204×0.72 . Contours start from 2σ (or 5.5mJy beam⁻¹) with a speain of 2σ . Right, the dust continuum without inner 30kA data points on the UV proval superposed in the Subaru image. The angular resolution is 0.95×0.66 . Contour start from 2σ (b) of 2σ . Right, the subaru image is 2σ (b) of 2σ (c) of 2σ center. Don't get excited too soon Pietu et al. 2005 Physical Processes in Circumstellar Disks Porto, Sept.18-23, 2006 23 around Young Stars Summary Pre-MS disks are flared, to varying degree (SEDs) - Grain growth and settling Disks are large, R ~ a few hundreds AU *****The surface density decreases roughly as 1/R *****We are beginning to see structures in disks

Physical Processes in Circumstellar Disks around Young Stars

- **★** We are beginning to see structures in disks
- ***** Disk masses are very poorly known
 - Estimates in the literature are likely underestimated

★ A "typical" disk does not have M=0.01 Msun, R=100AU, ∑⊕1/R^{1.5}

Dynamics in viscous disk

Keplerian rotation: v_φ=(GM*/R*)^{1/2}
 Radial drift toward the star: v_R~αc_s H/R
 No vertical motions: v_z=0

Turbulence?

Table 1: TYPICAL VELOCITIES				
R	v_{ϕ}	c_s	v_R	
	$(\mathrm{km}\ \mathrm{s}^{-1})$	$(\mathrm{km}\ \mathrm{s}^{-1})$	$(m \ s^{-1}!)$	
R_{\star}	360	6	100	
$1 \mathrm{AU}$	30	1	30	
100 AU	3	0.1	3	

Porto, Sept.18-23, 2006

Physical Processes in Circumstellar Disks around Young Stars

33

Porto, Sept.18-23, 2006

Physical Processes in Circumstellar Disks around Young Stars

ost disks are in keplerian rotatior

Porto, Sept.18-23, 2006

Physical Processes in Circumstellar Disks around Young Stars

17^h56^m21.5

Porto, Sept.18-23, 2006

