Disk Formation Mechanisms

¢ Rotationally supported circumstellar disks evidently
originate in the collapse of self-gravitating, rotating,
molecular cloud cores.

* Molecular line observations have established that
a majority of dense (> 10*cm™7) cloud cores
show evidence of rotation, with angular velocities
~ 3x1071° — 10713 s~ ! that tend to be uniform
on scales of ~ 0.1pc, and with specific angular
momenta in the range ~ 4x10%° —3x10*?2cm?s~ 1.

* The cores can transfer angular momentum to the
ambient gas through magnetic braking, a process
that also tends to align their angular velocity and
large-scale magnetic field vectors on a dynamical
timescale.

* Once dynamical collapse is initiated and a core
goes into a near—free-fall state, the specific
angular momentum is expected to be approximately
conserved, resulting in a progressive increase in the
centrifugal force that eventually halts the collapse
and gives rise to a rotationally supported disk
on scales ~ 102 AU; this picture is consistent
with interferometric molecular-line observations of
contracting cloud cores.



Modeling framework

Krasnopolsky & Konigl (2002)

&% Numerical simulations of magnetically supported
clouds have demonstrated that the gas rapidly
contracts along the field lines and maintains force
equilibrium along the field even during the collapse
phase, including in cases where the clouds are initially
elongated in the field direction. This motivates treating
the collapse as being quasi 1D.

&% To obtain semi-analytic solutions, postulate
self-similarity (in space and time; similarity variable
x = r/Ct, where C is the isothermal speed of sound).

* Core collapse is a multiscale problem, which is
expected to assume a self-similar form away from
the outer and inner boundaries and not too close to
the onset time (e.g., Penston 1969; Larson 1969;
Shu 1977; Hunter 1977). This has been verified by
numerical and semianalytic treatments of restricted
core-collapse problems — with /without rotation and
with /without magnetic fields.

* The necessary assumption of isothermality can be
justified mainly by the fact that thermal stresses
do not play a major role in the dynamics of the
collapsing core.



& To account for the weak ionization of the cloud
cores, incorporate ambipolar diffusion into the model.

* The ion—neutral drift velocity is negligible after
the start of the dynamical core-collapse phase.
However, once the central mass begins to grow,
ambipolar diffusion becomes important within the
gravitational “sphere of influence” of the central
mass: as the incoming matter decouples from the
field and continues moving inward, the decooupling
front moves outward and steepens into a C-type
ambipolar diffusion shock (Ciolek & Konigl 1998;
Contopoulos et al. 1998; cf. Li & McKee 1996).

* To incorporate ambipolar diffusion into the self-
similarity formulation, it is necessary to adopt
p; = Kp'/2. This approximation is applicable on
both ends of a density range spanning ~ 8 orders
of magnitude, which corresponds roughly to radial
scales ~ 10 — 10* AU, with K varying by only 1
order of magnitude across this interval.

& The transition from a nearly freely falling, collapsing
core to a quasi-stationary, rotationally supported disk
involves a strong deceleration in a centrifugal shock.
This shock is distinct from the ambipolar-diffusion
shock mentioned above: it typically occurs at a
different radius and is hydrodynamic, rather than
hydromagnetic, in nature.



& To allow mass to accumulate at the center in a
rotating-core collapse, an angular momentum transport
mechanism must be present.

* It is assumed that magnetic braking, the vertical
tranport of angular momentum through torsional
Alfvén waves, continues to operate also during this
phase of the core evolution. To incorporate it into
the self-similarity framework, one has to assume that
VA ext (the Alfvén speed in the ambient medium) is
a constant. (Note that in the ISM one in fact infers

Vaext ~ const = 1 km s™! in the density range
~10% — 10" cm™3.)

* One can verify that magnetic braking dominates
radial transport by MRI turbulence and gravitational
torques in the derived solutions.

* It is, however, also found that vertical angular
momentum transport from the disk by a
centrifugally driven wind arises naturally (and may
dominate) for fiducial parameter values.



Magnetized Isothermal Disk Equations
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Vertically Integrated Disk Equations

Thin-Disk approximation: B, = const (except in
0B,/0z term); B, and B, increase x z; all terms
O(H/r) (where H is the disk half thickness) are
neglected except in [B, s — H(0B./0r)].
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Magnetic Braking

Boulr) =2 (320 )
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(same as eq. [12] except that V is replaced by V; 4
to account for the fact that the field lines in the
mostly neutral medium are anchored in the ionized
component).

lon equation of motion in ambipolar-diffusion limit

1

niV —
PPni VD 47

(VxB)xB, (42)

where Vp = V; — V.. In particular,
Vb = BBy /2112
Vo, = (B,/2mvyuX)(Brs — HOB,/Or).

Expressing Vis in eq. (41) in terms of V, and Vp 4
and imposing a cap (6 < 1) on |By s|/B. (to account
for the possible development of a kink instability above
the disk surface), one gets
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Flux conservation relation:

o
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In the limit of a potential field (V x B = 0) outside
an infinitely thin disk, B, s(r) can be determined from
an r-integral of the midplane value of B.:
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(e.g., Ciolek & Mouschovias 1993), where Jy and .J;
are Bessel functions of order 0 and 1, respectively, and
Bier is the uniform ambient field at “infinity” (which
is henceforth neglected). A similar integral can be
written for g, [over X(r)]. These integrals can be
approximated by their monopole terms:
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When B, (r) [resp. X(r)] scales as r~9, one obtains
the monopole expression for B, s (resp. g,) with a

coefficient C'(q) ~ O(1) (Ciolek & Konigl 1998).



Self-similarity formulation
r=r/Ct,

H(r,t)=Cth(z), X(rt)= (C/Q?TGt) o(x) ,
Vr('r,t):C'u(:U), V( >t) ( )7
gr(r,t) =(C/t)g(z), J(r C*tj(z) ,
M(r,t) = (C%t/G)m(x), M(r,t) = (C*/G)m(z),
B(r,t) = (C/Gl/Qt) b(x),¥(r,t) =
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Assumed vertical hydrostatic equilibrium =- disk half-
thickness h:
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Initial Conditions (based on numerical simulations)
correspond to structure just before point-mass
formation:
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Solve as a boundary value problem using * — 0
asymptotic behavior.

Asymptotic behavior for circumstellar disks

m = m =My,
o= miat?,
—u = w=(mjo)rt/?,
5 = (21/36)(2m.)! /2 —3/2
14 (2n/36) 2]/

= 01 ZC_3/2,
b, = —bps/0 = [m*3/4/(25)1/2] R
brs = b/z* = (4/3)b. ,
ho= {2/[1+ (2n/30)%m.}'/2 23/2 .

Vary 5 = |B¢,S‘/Bz, o = C/VA,exty Vg = ng,o/c, and
0 = T (4nGp)'?.

Fiducial Solution: n =1, v9g =0.73, a =0.08, 0 =1

Initial rotation is not very fast and the braking is
moderate = AD shock is located further away from
the center than the centrifugal shock (x./z. ~ 30).

For C =0.19 km s !,
r = 1< {400, 4000} AU at t = {10%, 10°} yr.
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o Outer region (z > x,): ldeal-MHD infall.

e AD shock—resolved as a continuous transition.

o AD-dominated infall (z. < = < z,): near free-fall
controlled by central gravity.

e Centrifugal shock — its location depends sensitively
on the diffusivity parameter.

 Keplerian disk (r < x.) — at any given time, it
satisfies Mi, (1) = const, B o< r~°/* B, /B, = 4/3
(r — 0 solution).



*

*

*

The asymptotic disk solution implies a significant
surface field-line inclination to the rotation axis
(nominally 65 ~ 53°), indicating the likelihood of
centrifugally driven winds.

The steady-state, radially self-similar disk-wind
solution of Blandford & Payne (1982) can be
naturally incorporated into this solution since B
r—%/* in both cases.

When interpreted in this fashion, the asymptotic
solution is found to correspond to a weakly coupled
disk /wind configuration.

One can use this model to examine the full range of
expected behaviors of real systems — including the
limiting cases of (i) fast core rotation and (ii) strong
magnetic braking — and study their dependence on
the physical parameters.

New insights into the disk formation problem are
now starting to be provided by 3D, nonideal-MHD,
nested-grid simulations (e.g., Machida et al. 2006).
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Machida et al. (2006)



