Vidago Workshop 2006

Physical Processes in Circumstellar Disks Around Young Stars

Disk Hydrodynamics Talk #2: A Wonderland of Instabilities

Richard H, Durisen Aaron C. Boley & Scott Michael Department of Astronomy Indiana University

BIG QUESTIONS

What Hydrodynamical (**B=0**) Processes Really Affect Disk Evolution?

Which can and do alter the structure of disks?

Which, if any, can and do affect planet formation?

Which Can Transport Mass & Ang. Mom.?

- How efficient are they?
 - Is the transport local or global?

Outline of Talk #2 A Wonderland of Instabilities

Ø Hydrodynamic instability

- Onvective instability
- Ø Baroclinic instability

Application to disks

- Instabilities
 - hydrodynamic
 - Ø convective
 - ø baroclinic and others
- Large-scale structures
- Tapping the energy in Keplerian shear
- Gravitational instabilities
- Conclusions

Classic Results

Classic Results

Tassoul 1978 Shu 1992 Paploizou &Lin 1995 Balbus & Hawley 1998 Balbus 2003 Gammie & Johnson 2005

Hydrodynamic Instability

- Why should shear flows be unstable?
 - Consider a simple linear planar shear
 - ω dv_x/dz = v_x' = constant
 - There's energy to be had
 - redistribute momentum so $v_x = \text{constant over } z = z_0 \pm \epsilon$
 - all else equal, the kinetic energy decreases by a fraction of order $(\varepsilon v_x'/v_x)^2$
 - this energy can feed full-blown turbulence
 - What can keep the shear flow stable?
 - high viscosity
 - stratification (s=entropy increases "upward")

Tassoul 1978 Shu 1992 Paploizou &Lin 1995 Balbus & Hawley 1998 Balbus 2003 Gammie & Johnson 2005

Hydrodynamic Instability (cont'd)

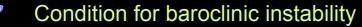
- Conditions for instability of shear flow
 - Shear flows are usually unstable for

 - 6 for low Re, viscosity can keep the flow laminar
 - *•* at high Re, turbulence ensues
 - Stratified shears are stable when

 - Ri measures the relative importance of buoyancy and shear
 - Naïve application to astrophysical disks
 - \mathscr{O} molecular v ~ v_{th}l ~ 10⁴ 10⁵ cm²/s
 - Ø Re ~ 10^{15} and Ri ~ 10^{-2} ⇒ unstable?

Classic Results

Tassoul 1978 Shu 1992 Paploizou &Lin 1995 Balbus & Hawley 1998 Balbus 2003 Gammie & Johnson 2005


Convective Instability

- Condition for convective instability
 - *O* Consider a plane parallel H.E. layer in R.E.
 - R.E. = radiative equilibrium = radiation carries all the energy flux
 - Onvective instability
 - Ø Schwarzschild criterion
 - Ø ds/dz_{R.E.} = s'(R.E.) < 0</p>
 - for high Re, convective flows are turbulent
 - Maïve application to disks
 - young stellar disks are convectively unstable in the zdirection for a wide range of conditions
 - a source of turbulent a.m. transport?

Tassoul 1978 Shu 1992 Paploizou &Lin 1995 Balbus & Hawley 1998 Balbus 2003 Gammie & Johnson 2005

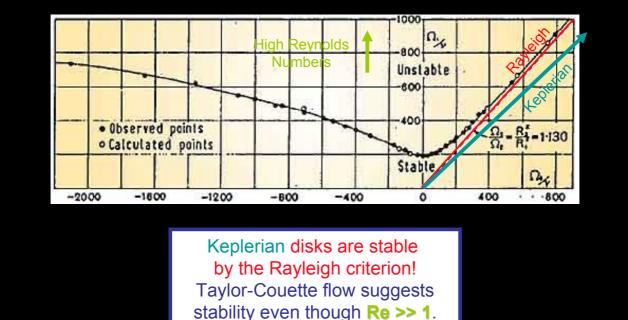
Baroclinic Instability

- Consider an axisymmetric rotating flow in a gravitational field (e.g., planet atmosphere)
 - barocline: constant entropy surfaces not the same as constant effective potential surfaces
- Ø Baroclinic instability
 - Ø Høiland criterion: instability occurs when
 - j = $r^2\Omega$ decreases outward on an s=const. surface
 - inertial waves and vortices can result
- Ø Naïve application to disks
 - such conditions can occur in disks
 - what happen then?

Applications to Disks

Application to Disks

Tassoul 1978 Shu 1992 Paploizou &Lin 1995 Balbus & Hawley 1998 Hawley et al. 1999 Balbus 2003 Gammie & Johnson 2005

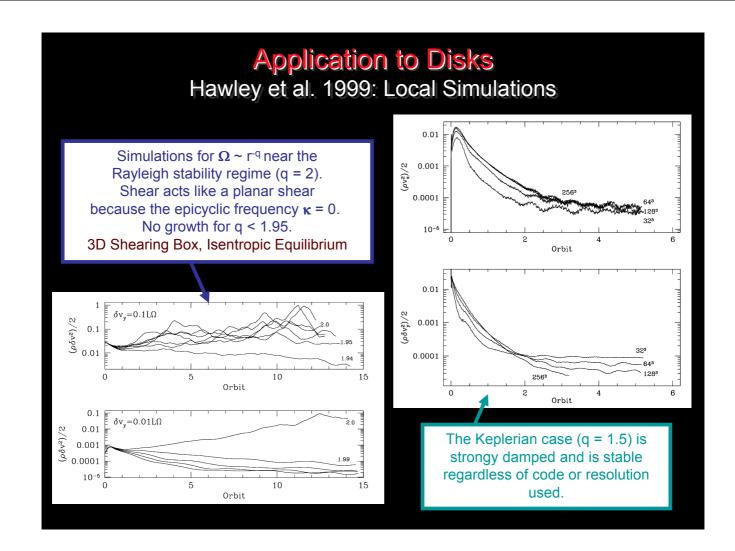

Instabilities

Ø V

What is unique here?

- Mew dynamical elements
 - angular momentum
 - centrifugal and Coriolis forces
- Axisymmetric stability
 - imagine exchanging rings of fluid between r_1 and $r_2 > r_1$ while conserving specific ang. mom.
 - \mathscr{O} if $j_1 > j_2$, the new state has less rotational K.E. and nonrestorative excess centrifugal forces
 - Ø Rayleigh criterion: $\partial j/\partial r < 0 ⇔$ instability!
- Taylor-Couette flow between rotating cylinders

Application to Disks Taylor-Couette Flow


Application to Disks

Caution: Incompressible & cylindrical

Papaloizou & Pringle 1984, 1985 Goldreich et al 1986 Narayan & Goldreich 1989 Paploizou &Lin 1995 Hawley et al. 1999 Balbus 2003 Johnson & Gammie 2006

Instabilities (cont'd)

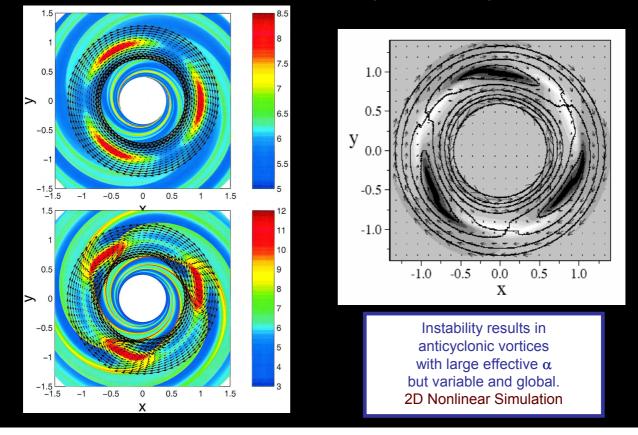
- Hydrodynamic
 - Precision local simulations
 - no linear or nonlinear instabilities detected for Keplerian shear
 - Re large does not cause local instability but
 - it is hard to exclude truly global effects
 - Interesting known global exception
 - Papaloizou & Pringle: narrow fluid annuli can be unstable due to interacting edge waves
 - *instability* for q > 1.732 with $\Omega \sim r^{-q}$ but
 - Ø Keplerian annuli (q =1.5) are stable

Lin & Papaloizou 1980 Stone & Balbus 1996 Cabot 1996 Balbus 2000 Klahr & Bodenheimer 2000, 2003 Johnson & Gammie 2006

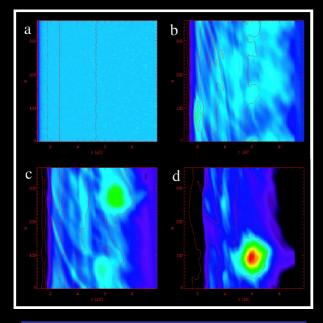
Instabilities (cont'd)

- Convection (z-direction)
 - Precision local simulations and analytic work
 - ${\ensuremath{\mathnormal{9}}}$ convection in disks causes r, ϕ Reynolds stresses that have the wrong sign
 - convection transports a.m. inward
 - Some residual uncertainty from global 3D radiative hydro simulations but
 - ${\cal O}$ effective $|\alpha|$'s probably not large in any case
 - no more than a fewx10⁻³ and probably much less

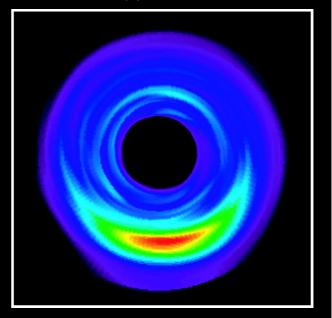
Application to Disks


Lin & Papaloizou 1995 Lovelace et al. 1999 Li et al. 2000 Klahr & Bodenheimer 2003 Johnson & Gammie 2006 Klahr & Bodenheimer 2006

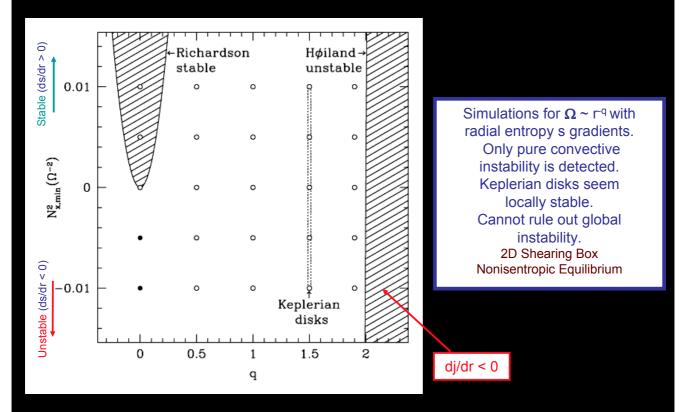
Instabilities (cont'd)


- Instabilities involving vorticity & entropy
 - Analogs of Papaloizou-Pringle and baroclinic instabilities
 - disks are broad, but they can have localized features which can act like edges
 - entropy gradients can also drive instabilities
 - Bumps, jumps, & extrema
 - *•* vortensity $\nabla x v/\Sigma$

 - extrema or sharp jumps in the r-distributions of these quantities can induce instability


Application to Disks Li et al. 2000, 2001: Bumps and Jumps

Application to Disks Klahr & Bodenheimer 2003: s´(r) < 0

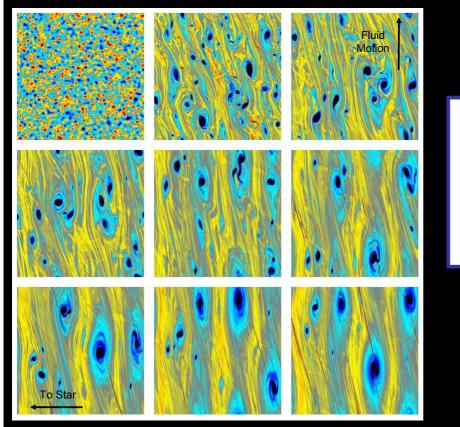


Large-scale dense anticyclonic vortex grows when s(r) < 0. 2D Annular Box, Radiative Hydro No self-gravity

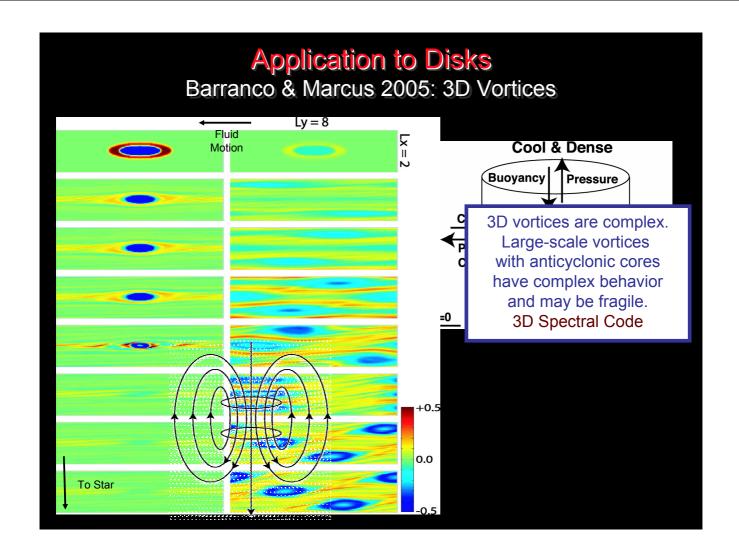
Same result in 3D. 3D Toroidal Grid, Radiative Hydro No self-gravity

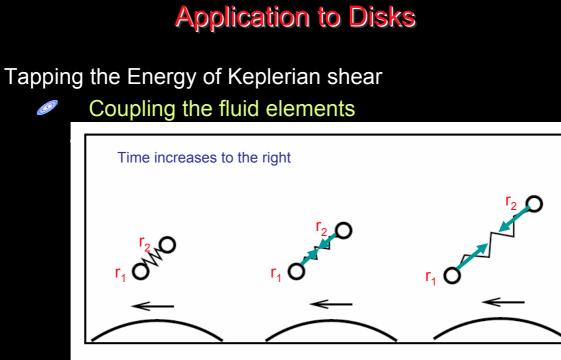
Application to Disks Johnson & Gammie 2006: s(r)

Application to Disks


Admas & Watkins 1995 Li et al. 2001 Godon & Livio 1999, 2000 Klahr & Bodenheimer 2003 Umurhu & Regev 2004 Barranco & Marcus 2005 Johnson & Gammie 2005, 2006

Large-Scale Structures


- Vortices
 - Ø Negative eddy viscosity
 - Iarge-scale vortices in shallow flows preferentially absorb smaller eddies with the same vorticity
 - Ø example: Jupiter's Red Spot
 - thin disks might exhibit a similar phenomenon
 - Ø Stresses
 - the preferential sign for large-scale vorticity (anticyclonic) causes net Reynolds stresses of the right sign
 - Ø Various instabilities just discussed
 - could act as a source for vortical motions


Application to Disks

Johnson & Gammie 2005: 2D Vortex Growth

Large-scale anticyclonic vortices grow and are sustained in 2D Keplerian shear. 2D Shearing Box Isothermal EOS No self-gravity

what kind of weak springs are available?

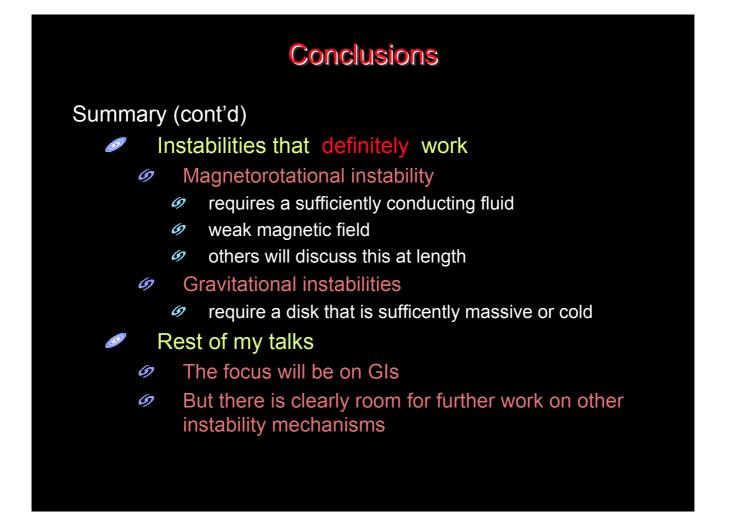
- \mathscr{O} disk self-gravity \Rightarrow Gravitational Instability (GI)

Conclusions

Conclusions

Summary

Ø


Instabilities that probably do not work

- Hydrodynamic instability due to shear
 - Ø Keplerian disks are locally stable
 - global stability difficult to establish
- Onvective instability in the z-direction
 - convection probably produces only weak inward a.m. transport
 - Ingering uncertainty about the global regime

Conclusions

Summary (cont'd)

- Instabilities that probably do occur
 - Hydrodynamic instabilities due to edges
 - Ø Keplerian shears are stable
 - ø but localized deviations from Keplerian could occur
 - Instabilities due to extrema
 - extrema of some properties in bumps or edges can induce waves to grow
 - fransport can be substantial
 - Ø Vortices
 - large-scale anticyclonic vortices grow from vorticity noise in 2D
 - 69 their fate in 3D is uncertain

