Vidago Workshop 2006

Physical Processes in Circumstellar Disks Around Young Stars

Disk Hydrodynamics Talk #1: Introduction

Richard H. Durisen

Aaron C. Boley & Scott Michael

Department of Astronomy, Indiana University,

BIG QUESTIONS

What Purely Hydrodynamical (**B**=0) Processes Affect Disk Evolution?

- Which can and do alter the structure of disks?
 - Which, if any, can and do affect planet formation?

Which Can Transport Mass & Ang. Mom.?

- How efficient are they?
- Is the transport local or global?

STRONG PERSONAL BIAS

What Purely Hydrodynamical (**B=0**) Processes Affect Disk Evolution?

- Which can and do alter the structure of disks? Gravitational Instabilities
- Which, if any, can and do affect planet formation? Gls

Which Can Transport Mass & Ang. Mom.? Gls

How efficient are they? Very

Is the transport local or global?

Outline of Talks

Talk #1: Introduction

- Talk #2: A Wonderland of Instabilities
- Talk #3: Gravitational Instabilities I
- Talk #4: Gravitational Instabilities II
 - Talk #5: Special Effects and the Future

Outline of Talk #1

What is a disk?

Thin sheet vs a flat star

Important processes

- 🥟 Internal
- 🤣 External

Origins of disks

- Ø Rotating Cloud Collapse
- Turbulent Cloud Collapse
- Evolution due to stresses
 - Turbulent accretion disks
 - The big three stressors
 - Ø Overstressed?

What is a Disk?

What is a Disk?

Shakura & Sunyaev 1973 Lynden-Bell & Pringle 1974 Hartmann 1998 Gammie 2001 Balbus 2003 Gammie & Johnson 2005

Disks as Thin (cont'd)

Vertically integrated equations

 Time-dependent Keplerian viscous accretion disk theory for ν (= $\alpha c_s H$) << r²Ω

$$\frac{\partial \Sigma}{\partial t} = \frac{3}{R} \frac{\partial}{\partial R} \left[R^{1/2} \frac{\partial}{\partial R} (\nu R^{1/2} \Sigma) \right]$$

- Equation of state (low frequency)
 - \emptyset U = $\int udz$ and P = $\int Pdz$

 - *G* g_z dominated by star: $\Gamma = (3\gamma 1)/(\gamma + 1)$
 - \mathscr{O} g₇ dominated by disk: $\Gamma = 3 2/\gamma$
- Instantaneous adjustment of equilibrium in the zdirection assumed

What is a Disk?

- Zero-order axisymmetric equilibrium
- Centrifugal balance in the r-direction
 - Θ P_{rot} = rotation period = $2\pi/\Omega$
 - sets the "dynamic" time scale
- Pressure balance in the z-direction
 - \mathscr{O} c_s/H = the vertical sound crossing time = t_z
 - $\boldsymbol{\mathscr{O}} \qquad \boldsymbol{\mathsf{c}}_{\mathsf{s}}/\mathsf{H} \boldsymbol{\sim} \boldsymbol{\Omega} \Longrightarrow \boldsymbol{\mathsf{t}}_{\mathsf{z}} \boldsymbol{\sim} \boldsymbol{\mathsf{P}}_{\mathsf{rot}}/2\pi$
- Dynamic time scales are comparable in r and z regardless of H/r!
- r and z dynamics <u>are</u> coupled
 - Ø 3D disks have richer dynamics than 2D disks

Disks as Thick (cont'd)

- Critical physics
 - Energy transport couples in 3D
 - radiation flows in both r and z
 - External effects often set a vertical B.C.
 - accretion
 - Irradiation
 - Global dynamics resembles flattened star
 - "Density" waves are also surface distortions
 - Vertical dynamics
 - Hydraulic jumps ("shock bores")

Lin & Paploizou 1980 Hartmann 1998 Pickett et al. 1996, 2000 Lubow & Ogilvie 1998 Dullemond et al. 2006 Boley & Durisen 2006

What is a Disk? Shock Bore

Driven Spiral Shock in a High Mass Solar Nebula Model Meridional Slice

Shock Heating by artificial viscosity

Animation courtesy of Aaron C. Boley

Important Processes

Important Processes

Important Processes

Internal Processes (cont'd)

Hydrodynamics & MHD

- Instabilities
 - hydrodynamical
 - gravitational
 - 69 magnetohydrodynamical
 - turbulence due to instabilities
- Gas/solid interactions
 - 🥝 gas drag
 - gravity
 - Ø differential drift & mixing of solids
- Shocks & shock bores
- Magnetic fields

Important Processes

External Processes

- Gravitational
 - Ø Binary or multiple components
 - Tidal encounters

Material

- Accretion or wind outflow
- Ø Disk collisions

Radiation & energetic particles

- Ø Cosmic rays
- Ocentral or nearby star(s)
- Warm envelope around the star & disk
- Global magnetic fields

Formation Rotating Cloud Collapse

Disk Evolution

General

- External processes
 - Already mentioned

Internal processes

- Ø Evolution of disk constituents
 - ø particle growth and settling
 - Ø planet formation and migration
 - Ø chemistry
- Internal stresses that create torques
 - Ø molecular viscosity too small
 - $t_{ev} \sim r_d^2/\nu > Hubble time$
 - Ø turbulent stresses due to instabilities

Shakura & Sunyaev 1973 Lynden-Bell & Pringle 1974 Hartmann 1998 Gammie 2001 Balbus 2003

Turbulent Evolution

Axisymmetric equilibrium

- gravity, rotation, isotropic pressure

Angular momentum transport

- Ø Energy release by mass↓ & ang mom↑
- Consider transport as a perturbation
 - Ø deviations from equilibrium small
 - ang. mom. changes lead to orbit changes
- Met z-components of the torque
 - requires off-diagonal stress tensor terms
 - generally requires nonaxisymmetry

Disk Evolution

Shakura & Sunyaev 1973 Lynden-Bell & Pringle 1974 Hartmann 1998 Gammie 2001 Balbus 2003

Turbulent Evolution (cont'd)

- Turbulent accretion disk
 - Consider physical quantities fluctuating about the axisymmetric equilibrium
 - Thin-disk evolution equation

$$\frac{\partial \Sigma}{\partial t} = \frac{1}{R} \frac{\partial}{\partial R} \left[\frac{1}{(R^2 \Omega)'} \frac{\partial}{\partial R} (\Sigma R^2 W_{R\phi}) \right]$$

Ø Keplerian viscous evol. eq. recovered by

- $\varphi = v = \alpha c_s^2 / \Omega = \alpha c_s H$ with Keplerian Ω

Lynden-Bell & Kalnajs 1972 Balbus & Papaloizou 1999 Gammie 2001 Balbus 2003

Turbulent Evolution (cont'd)

Evolution equation

$$\frac{\partial \Sigma}{\partial t} = \frac{1}{R} \frac{\partial}{\partial R} \left[\frac{1}{(R^2 \Omega)'} \frac{\partial}{\partial R} (\Sigma R^2 W_{R\phi}) \right]$$

The Big Three Stressors

- What stresses change z-comp of ang mom?
- Reynolds (or Hydrodynamic) stress

$$\mathscr{O} \quad W^{\mathsf{R}}_{r_{0}} = \langle \int dz \, v_{r} \delta v_{0} \rangle$$

- Gravitational (or Newtonian) stress
- Maxwell (or Magnetic) stress
 - $W^{M}_{r\phi} = < \int dz \ B_{r} B_{\phi} / 4\pi\rho >$

Disk Evolution

Balbus & Papaloizou 1999 Gammie 2001 Balbus 2003

Turbulent Evolution (cont'd)

- Local vs Global
 - Two ways to be intrinsically global
 - #1: local treatment cannot determine W_{ro}
 - #2: energy dissipation is not local
 - Thin disk, local transport, in thermal equil.
 - $ω = 4/[9\Gamma(\Gamma-1)t_{cool}\Omega]$

🥟 Global

- for either #1 or #2, alpha-disk breaks down
- in case #2, waves transport energy

Turbulent Evolution (cont'd)

- Is there a maximum stress?
 - **\boldsymbol{\varnothing}** Can W_{ro} (or α) get too large?
 - Ø What then?
 - Ø disk fragmentation?
 - Ø For gravitational stresses

 - stress levels $\alpha > 0.1$ are sustained without fragmentation for t_{cool} = constant (& are also large in global bursts)
 - cooling controls gravitational fragmentation
 - She can't take no more, Captain!"

Big Questions Revisited

BIG QUESTIONS

What Hydrodynamical (B=0) Processes Really Affect Disk Evolution?

Which can and do alter the structure of disks?

Which, if any, can and do affect planet formation?

Which Can Transport Mass & Ang. Mom.?

- How efficient are they?
- Is the transport local or global?