Key Ingredients

- For completeness:
 - shocks --> what about the accretion shock onto the disk
 - high temperature chemistry --> 1 big effect that should be stated
- Radiation -- provides source of ionization to power chemistry and warms grains to release frozen molecules
 - Cosmic Rays
 - UV
 - X-rays
 - Extinct Radionuclides

The Accretion Shock

- During the initial stages of infall and the formation of the disk material will rain on central star and on inner disk -- providing a accretion shock
- As the infall proceeds the centrifugal radius, r_c , (the inner radius within which infall occurs) grows: $r_c \propto t^3$ (see Tereby, Shu, and Cassen 1984; Hartmann 1998)
- When shock speeds exceed ~15-20 km/s the mantle can be sputtered off the grain surface (Caselli et al. 1997; Schilke et al. 1997)
 - Lunine et al. 1991 used this idea to suggest all ices sublimate and recondense with the effects greatest in the inner (< 30 AU) disk

The Accretion Shock

• Neufeld and Hollenbach 1994:

$$v_s = \sqrt{\frac{GM}{3r_c}} = 17.2 \left[\frac{M(t)}{M_{\odot}}\right]^{1/2} \left[\frac{r_c(t)}{1AU}\right]^{-1/2} \ km \ s^{-1}$$

- Should lead to copious water creation (sputtering of infalling water coated grains) in early stages for the inner disk.
- Less important for outer disk and at later evolutionary stages.
- Means most material should arrive on disk unaltered from ISM initial state.

High Temperature Chemistry

When gas temperatures exceed > 300 K a series of well studied reactions lead to all atomic oxygen going into water. $H \rightarrow H_2 \rightarrow OH + H$ $H \rightarrow H_2 \rightarrow H_2O + H$ $H \rightarrow H_2 \rightarrow H_2O + H$ ٠

 $O + H_2 -> OH + H$ $OH + H_2 -> H_2O + H$

inner nebula must have been rich in water vapor

Bergin et al. 1998

Cosmic Rays

Cosmic ray ionization rate
 estimated from ISM observations
 and Voyager data.

$$\zeta_{cr,0} = 1.3 \times 10^{-17} \text{ s}^{-1}$$

- Webber 1998
- van der Tak and van Dishoeck
 2000
- Umebayashi and Nakano (1981) examined penetration depth of cosmic rays –find:

 $\Sigma_{\rm cr}$ = 96 g cm⁻²

Rate goes as $(\Sigma_1 = \text{gas column})$ from above and $\Sigma_2 = \text{gas column}$ $\zeta_{cr} = \frac{\zeta_{cr,0}}{2} \left[\exp\left(-\frac{\Sigma_1}{\Sigma_{cr}}\right) + \exp\left(-\frac{\Sigma_2}{\Sigma_{cr}}\right) \right]$

Cosmic Rays

- Caveat:
 - Cosmic rays in our solar system are scattered by the solar magnetic field
 - Only high energy C.R. penetrate -- not the ones responsible for ionization
 - Cosmic rays represent the best mechanism to ionize the midplane where most mass resides
 - The detection of ions and comparison with models suggest that some mechanism is active at large radii
 - Cosmic rays are likely available for the outer disk (r > 100 AU)
 - Confirming inner disk will require ALMA

Ultraviolet Radiation

- T Tauri stars have excess UV flux much higher than their effective temperature ~ 3000 K
 - From accretion shock and potential contributions from active chromosphere (Calvet and Gullbring 1998; Alexander et al. 2005)
- Observations suggest it plays a key role in observed molecular emission.
- Willacy and Langer (2000) and Aikawa et al. (2001) first noted importance of photoprocessing in terms of chemistry.
 - Observed effects such as CN/HCN ratio and its similarity to enhancements seen in ISM noted earlier.
- 2 fields to consider --
 - Stellar radiation field
 - Interstellar radiation field: especially if star born within a cluster (this area has not yet fully been examined)

Stellar Radiation Field

- Initial studies placed field in context of interstellar radiation field.
 - Habing (1968): $G_0 = 1$ defined as equivalent to 1.6 x 10⁻³ erg cm⁻² s⁻¹

[–] Draine (1978):
$$\chi = 1$$

 $\chi = G_0 \times 1.7$

- Enables use of ISM chemical networks developed using models of interstellar grain absorption and scattering.
 - Roberge et al. 1981
 - Roberge et al. 1991
 - Cecchi-Pestellini et al. 1995
 - Nice summary in van Dishoeck (1988), Rate Coefficients in Astrochemistry

Draine 1978

Stellar Radiation Field

- Stellar UV generated at least in part by accretion (may be an active chromospheric component: Calvet, Clarke)
- First pass: using IUE obesrvations of T Tau and RU Lup
- FUV below 2000 Å:

-
$$F_{\lambda} = 3 \times 10^{-13} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ Å}^{-1}$$

- Scaled to 100 AU and integrated over 1000 Å (Lyman limit to 2000 Å): 23.5 erg cm⁻² s⁻¹
- $G_0 = 1.5 \times 10^4 \text{ at } 100 \text{ AU}$
- Will scale as $1/r^2$ with radius
- BUT: not all T Tauri stars are the same -- T Tau and RU Lup are strong accretors with dM/dt ~ 10⁻⁷ M_o yr⁻¹
- Typical TTS has $dM/dt \sim 10^{-8} M_{\odot} yr^{-1}$

LkCa15 HST/STIS Spectrum

LkCa15 Ly α pumped H₂ Emission

Electron Impact Excitation?

Radiation Field: UV Emission from

Malaculas

Ly α Radiation

- \bullet Ly α radiation absent from ISRF
- Flux from TW Hya 2 orders of magnitude above BP Tau/CY Tau (no IS/local cloud absorption but is circumstellar absorption)

- Light Blue: BP Tau ($M = 3 \times 10^{-8} M_{\odot}/yr$)
- Blue: CY Tau (~ BP Tau)

Bergin et al 2003

UV Radiation Transfer

- Stellar field has shallow angle of incidence on flared disk
- External/ISM field has normal angle of incidence
- van Zadelhoff et al.
 2003: detailed model of UV radiation transfer.
 - showed that scattering aids the penetration of the stellar field
- Bergin et al. 2003: analytical solution

UV Radiation Transfer

- Define mean intensity: $J_{\lambda} = \frac{1}{4\pi} \int I_{\lambda} d\Omega$

- Mean intensity impinges on surface with angle θ_0 ; $\mu_0 \equiv \cos\theta_0$
- J_{λ} decays by $e^{-\tau_{\lambda}/\mu_0}$; at R = 100 AU $\mu_0(1000 \text{\AA}) = 0.07$

- solution of radiation transfer has 2 terms (use standard u, v forms in Mihalis 1978)

where

$$\begin{split} C_1 &= 1 - 3\sigma_\lambda \mu_0^2, \\ C_2 &= \frac{1 + 3/2 \ \mu_0 + 3(1 - \sigma_\lambda) \mu_0^2}{1 + 2\sqrt{(1 - \sigma_\lambda)/3}}, \end{split}$$

Bergin et al. 2003

UV Radiation Transfer

⁻ Normal ISRF equivalent to stellar at 100 AU -- stellar field will dominate for r < 100 AU

 If IRSF field attenuated by 1 mag then stellar field dominates -- but ISRF can be enhanced locally if O or B star present.

Penetration depth: $\Sigma_{uv} \sim 1.3 \times 10^{-3} \text{ g cm}^{-1}$

Importance of Ly α Radiation?

- Dominates UV radiation field -- in TW Hya carries 85% of FUV flux (Herczeg et al 2004)
- H₂ emission is evident reaching molecular layer
- Important for chemistry: HCN and H_2O (and other species) will be dissociated by Ly α photons -- CN is not (Bergin et al 2003).
- To include in chemistry need to answer some questions:
 - what is true line profile? TW Hya has circumstellar absorption, other sources have both circumstellar and interstellar absorption
 - radiation is clearly reaching molecular layer, but H I layer on surface will scatter photons (mostly out!)

Reconstructed Line Profile

Radiative Transfer

- two ways to be "destroyed"
 - H atom scattering out of surface
 - grain absorption
- photons in the wings need to be destroyed by grains
- at 100 AU about 10% of flux reaches molecular layer (A_v ~ 1) -- provided no additional absorption beyond PDR on disk surface (i.e. wind..)

Photodissociation

For CO primary dissociation bands < 1000 Å For H₂ lines < 1300 Å For H₂O dissociation x-section up to 2000 Å

Molecular Photodissociation

- If UV field parameterized as function of ISM field then can use previously calculated rates.
 - Includes only direct attenuation of the field ignores scattering
 - General form: $k_{pd}(s^{-1}) = k_0 exp(-\gamma A_v)$
 - Does not account for shape of the field
 - New: van Dishoeck (2006) present rates calculated for 4,000 K and 10,000 K blackbodies. (NEXT 2 SLIDES)
- If directly calculating field then must calculate the photorate using molecular photodissociation (and ionization) cross-sections

- $k_{pd}(s^{-1}) = \int (4\pi\lambda/hc)\sigma(\lambda)J_{\lambda}d\lambda$

 $\sigma(\lambda)$ from literature – no good repository see previous calculations and follow reference trail

van Dishoeck 2006: Faraday Discussion

van Dishoeck 2006: Faraday Discussion

Species	$\sigma_{\rm pd} \ ({\rm cm}^{-2})$	Accuracy [▶]	Ref
CH	5.0(-20)	С	[72] T
CH_2	5.0(-20)	С	[77] T
CH_4	1.8(-17)	Α	[41] E
C_2	5.0(-18)	В	[55] T
C_3	1.0(-18)	С	[58] T
C_2H	1.0(-18)	С	[60] T
C_2H_2	$\geq 4(-17)^{c}$	в	[65] E
C_4H_2	3.5(-17)	в	[54] E
OH	1.8(-18)	в	[75] T
H_2O	1.2(-17)	Α	[42] E
O_2	$1.0(-20)^{b}$	С	[53] E
CO_2	6.1(-20)	Α	[83] E
H_2CO	1.0(-17)	В	[67] E
CH_3OH	1.4(-17)	Α	[52] E
NH	1.0(-18)	в	[33] T
NH_3	1.0(-17)	Α	[64] E
HCN	3.0(-17)	Α	[39] E
HC_3N	2.5(-17)	В	[9] E
CH_3CN	2.0(-17)	Α	[66] E
NO	4.0(-19)	В	[20] E
H_2S	3.3(-17)	в	[40] E
SO	1.0(-16)	С	[51] E
SO_2	3.0(-17)	в	[40] E
OCS	1.5(-17)	Α	[40] E
CS_2	2.5(-17)	В	[40] E
Mg p.i.	3.0(-19)	Α	[73]
Si p.i.	3.0(-17)	Α	[73]
Fe p.i.	6.2(-19)	Α	[73]
NH ₃ p.i.	2.0(-18)	в	[79] E
NO p.i.	1.6(-18)	в	[20] E
CS ₂ p.i.	2.0(-16)	в	[40] E

Table 1: Photodissociation and ionization cross sections at Lyman α 1216 Å^a

van Dishoeck 2006: Faraday Discussion

Table 2: Photodissociation rates for various radiation fields ^{<i>a,b</i>}								
Species	$k_{pd}^{o} \; (\mathrm{s}^{-1})$			γ				
	$ISRF^{c}$	$10000 \mathrm{K}^{d}$	$4000 \mathrm{K}^d$	ISRF	$10000~{\rm K}$	4000 K		
H_2^+	5.7(-10)	1.9(-10)	2.9(-11)	2.37	2.14	1.99		
CH	9.2(-10)	2.0(-9)	1.2(-7)	1.72	1.49	1.28		
CH^+	3.3(-10)	3.5(-11)	4.8(-10)	2.94	1.78	1.31		
CH_2	5.8(-10)	1.2(-9)	2.1(-9)	2.02	2.02	2.12		
CH_2^+	1.4(-10)	7.4(-11)	2.6(-11)	2.21	1.91	1.88		
CH_3	2.7(-10)	2.5(-10)	8.2(-10)	2.27	2.24	2.32		
CH_4	1.2(-9)	2.2(-10)	1.2(-12)	2.59	2.45	2.29		
CH_4^+	2.8(-10)	4.2(-11)	1.3(-13)	2.71	2.58	2.48		
C_2	2.4(-10)	4.1(-11)	3.2(-13)	2.57	2.36	2.25		
C_2H	5.2(-10)	1.9(-10)	7.2(-12)	2.30	2.16	2.10		
C_2H_2	3.3(-9)	1.2(-9)	1.3(-10)	2.27	2.12	1.97		
C_2H_4	3.0(-9)	2.2(-9)	5.2(-10)	2.10	1.96	1.90		
C_3	3.8(-9)	2.9(-9)	2.0(-10)	2.08	2.07	2.06		
$c-C_3H_2$	1.9(-9)	1.7(-9)	9.2(-10)	2.07	2.06	2.10		
OH	3.9(-10)	1.8(-10)	1.3(-10)	2.24	2.00	1.67		
OH^+	1.1(-11)	7.8(-13)	5.8(-13)	3.50	2.80	1.75		
H_2O	8.0(-10)	4.3(-10)	1.2(-10)	2.20	1.97	1.90		

UV Radiation: Grain Properties

- Grain absorption will vary with dust grain properties.
- As grains coagulate and settle to midplane the UV opacity will decrease
- Transition to optically thin disk
- Key question: presence of PAH's in the upper atmosphere -- will not settle. If present then UV radiation field will be reduced in disk (Jonkheid et al. 2004)

Dullemond and Dominik 2005

X-ray lonization

- X-rays are a key source of ionization and heating of protoplanetary disks.
- Typical X-ray luminosity (Orion): $L_x = 10^{28.5} 10^{31}$ ergs s⁻¹ with $T_x = 1-2$ kev (Glassgold et al 2000, PPIV; Feigelson et al. 2005)
- Ionize the inner shells of heavy elements

X-ray Ionization

- For atoms heavier than Li inner shell ionization is followed by the Auger effect
 - Generates: $N_1 = 1 + A$ primary electrons with $E_{tot} = E_x I.P.$ (I.P. = ionization potential)
 - ' A = 1 for (3 < Z < 10)
 - A = 4.75 for Fe
 - Each primary electron will produce secondary electrons by impact ionization of gas
 - Generates: $N_2 = E I.P./\Delta\epsilon$ secondary electrons
 - $\forall \ \Delta \epsilon =$ mean energy to make an ion pair $\approx 37 \ eV$ (Shull and van Steenberg 1985)

X-ray Ionization

• $N_2 >> N_1$ therefore for X-ray ionization rate, ζ_x :

 $\zeta_x = \zeta_1 + \zeta_2 = \zeta_2$

- Therefore secondary electrons dominate (well known result -- as is the case for cosmic rays)
- In general there are ~ 30 atoms and molecules ionized per keV (Aikawa and Herbst 1999)

X-ray Ionization

$$\zeta_x = N_2 \int_{1 \ keV}^{30 \ keV} \sigma(E) F(E) dE$$

where $\sigma(E)$ is the cross-section for direct ionization for all elements weighted by solar abundances and

$$F(E) = F_0 e^{-\tau(E)}$$

$$F_0 = f(T_x, L_x, E)$$

 $-L_x$ is the X-ray luminosity and T_x the characteristic temperature of the X-ray spectrum.

Full expression in Glassgold et al. 1997

X-ray Opacity and Cross-Section

Morrison and McCammon 1983

 $\tau_x = N(H) \times \sigma_x(cm^2)$

Calculation of σ_x from Morrison and McCammon (1993)

Assumed Solar abundances.
 Opacity depends on atomic level absorption!!!!!

Will change if metals are depleted from the surface of the disk (via settling).

- Thus: $\sigma_x(r, z, t)!$

In this case need to calculate the absorption cross-sections directly using data Henke et al. 1993

X-ray lonization

Extinct Radionuclides

- If cosmic-rays are excluded then radionuclides provide a baseline level of ionization.
- Question is what was present in our solar system

Finocchi and Gail 1997

Kinetic Models

- Key Players (see papers)
 - Finnochi, Gail, ... (dust destruction and formation, ionization)
 - Aikawa + (models of radial and vertical dependence)
 - Willacy + (models of radial and vertical dependence)
 - Kamp + (more evolved sources debris disks and A/B stars)
 - Markwick + (inner disk)
 - Semenov + (lon fraction/mixing/radial/vertical)
 - Ilgner + (turbulence/chemistry in inner disk)
 - Bergin + (UV/X-rays)

.

Aikawa et al. (1996) Bauer et al. (1997) Finocchi & Gail (1997) Willacy et al. (1998) Aikawa & Herbst (1999) Aikawa et al. (1999) Aikawa & Herbst (1999b) Willacy & Langer (2000) Aikawa & Herbst (2001) Aikawa et al. (2002) Markwick et al. (2002) van Zadelhoff et al. (2003) Millar et al. (2003) Ilgner et al. (2003)

Kinetic Models: Time Dependence

FIG. 1.—Evolution of the molecular abundance in two representative regions of the disk, (a) R = 87 AU ($n_{\rm H} = 2.9 \times 10^9$ cm⁻³, T = 30 K) and (b) R = 9.7 AU ($n_{\rm H} = 1.2 \times 10^{12}$ cm⁻³, T = 90 K). The initial molecular abundance was determined referring to the abundance in dark clouds. The solid, dotted, and dashed lines represent the abundance of carbon-, oxygen-, and nitrogen-bearing molecules, respectively, relative to hydrogen.

Aikawa et al. 1997

Disk Temperature Structure and Chemistry

 Willacy et al. 1998: static model, radial dependence, midplane

Disk Temperature Structure and Chemistry

Aikawa et al. 1999: accretion flow in radial direction

Warm Surface!

- > 2000, 2001 models recognized the existence of hot surface -- allows for active gas phase chemistry
 - Models of D'Alessio, Calvet; Chiang, Goldreich which match dust Spectral Energy Distribution (SED) began to be used
 - provide a basis of n and T as a function of r,Z to model theory
 - greater role for photons to play in chemistry

Warm Molecular Layer

- Willacy and Langer (2000) noted the importance of the surface -- stressed photodesorption.
- Aikawa et al. 2002 -- formation of the "warm molecular layer"
 - Vertical layers where the grain temperature is high enough to sublimate molecules but UV reduced enough to allow molecular formation
- These works matched column densities and some variations seen in observations (e.g. CN/HCN)
- Generally accepted piece of disk chemistry.
- Results will strongly depend on adopted disk physical structure.

three-layer model

(i) photon-dominant layer

UV & X-ray irradiation low density ($n_H < 10^5 \text{cm}^{-3}$) high temperature (T > several 10 K)

three-layer model

(i) photon-dominant layer

UV & X-ray irradiation low density (n_H< 10⁵cm⁻³) high temperature (T > several 10 K)
(ii) warm molecular layer high density (n ≥ 105em³)

high density ($n_{\rm H} > 10^5 {\rm cm}^{-3}$) moderate temperature (T > 20 K)

three-layer model

cf.)Observation :

(i) photon-dominant layer

UV & X-ray irradiation low density ($n_{\rm H} < 10^5 {\rm cm}^{-3}$) high temperature (T > several 10 K) (ii) warm molecular layer high density ($n_{\rm H} > 10^5 {\rm cm}^{-3}$) moderate temperature (T > 20 K) (iii) midplane freeze-out layer

very high density ($n_{\rm H} > 10^7 {\rm cm}^{-3}$)

low temperature (T \leq 20 K)

vertical distribution @ r~300 AU CO_{ice} СО iii ii i -6 µn/(i)n gol CN HCO¹ C2H

HCN

300

400

200

van Zadelhoff et al. (2003)

 H_2D^+

100

-12

three-layer model

(i) photon-dominant layer

UV & X-ray irradiation low density $(n_H < 10^5 \text{cm}^{-3})$ high temperature (T > several 10 K) (ii) warm molecular layer high density $(n_H > 10^5 \text{cm}^{-3})$ moderate temperature (T > 20 K) (iii) midplane freeze-out layer very high density $(n_H > 10^7 \text{cm}^{-3})$ low temperature (T < 20 K)

(iv) inside snow line (r < 10 AU)

"hot core" like chemistry

(Najita et al. 2006/PPV, Markwick et al. 2002;

thermal desorption

Ilgner et al. 2004)

Inner Disk Chemistry

 Effects of X-ray heating of upper atmosphere and resulting chemistry discussed in Glassgold et al. 2004

FIG. 5.—Abundances of the main oxygen species plotted vs. perpendicular column density at a radial distance of 1 AU for the case $\alpha_h = 1$.

Chemical-Physical Links: ion fraction

Constraints from observation

- Dutrey et al. (1997):

 $x(HCO^{+})=(1-7) \times 10^{-10}$

- Qi et al. (2003)

x(e) >10⁻⁸ at disk surface where $x(CO) \sim 10^{-5}$ (from observation of HCO⁺ and N₂H⁺)

- Ceccarelli et al. (2004) (4-7) × 10⁻¹⁰ from H_2D^+ So far, consistent with models...

- Mixing -- long history
 - Presence of chondritic refractory inclusions in meteorites (MacPherson et al. 1998)
 - Crystalline silicates in comets (Bockelee-Morvan et al. 1998)
 - Gas mixing from warm planet forming nebula to outer cold nebula suggested to account for ammonia and methane in comets (Fegley and Prinn 1989)
- Classic references
 - [–] Prinn 1990, 1993
 - Stevenson 1990

To simplify the interaction between dynamics and chemistry - consider two timescales

- $-\tau_{chem}$: the chemical timescale
- $-\tau_{dyn}$: the dynamical timescale

If $\tau_{chem} < \tau_{dyn}$ then chemistry can attain an equilbrium and is unaffected If $\tau_{chem} > \tau_{dyn}$ then mixing alters the composition

Parameterize the transfer of angular momentum in terms of turbulent viscosity: $\nu = \alpha c_s H$

 α is a dimensionless parameter (Shukura and Sunyaev 1973; Pringle 1981) H is the scale height

 c_s is the sound speed

The radial disk viscous timescale is $\tau_{\nu} = r^2/\nu$ or,

$$au_{\nu} \sim 10^4 \mathrm{yr} \left(\frac{\alpha}{10^{-2}}\right)^{-1} \left(\frac{T}{100 \mathrm{\,K}}\right)^{-1} \left(\frac{r}{1 \mathrm{\,AU}}\right)^{\frac{1}{2}} \left(\frac{M_*}{M_{\odot}}\right)^{\frac{1}{2}}$$

- The Diffusivity, *D*, is not the same as the viscosity, v (Stevenson 1990)
 - Common to equate the two
- For MRI there may be a dead zone near the midplane where mixing will not occur -- may only be a surface effect.
- In the case of MRI the situation is unclear
 - Carballido et al. 2005 estimate $v/D \sim 11$ (turbulent mixing less efficient than angular momentum transport)
 - ⁻ Turner et al. 2006 estimate $v/D \sim 1 2$
- Models grouped into 2 categories
 - Ones that include only advection (inward movement of material)
 - Models that include radial and/or vertical mixing

Advection

- Release of more volatile mantle material (e.g. CO, N₂) as material accretes inward
- Gas phase processing creating heavier molecules (e.g. HCN) which can freeze onto grains or remain in gas
- Chemistry should exhibit strong radial gradients – how to separate from other radial effects (increasing effects of radiation) is an area of interest.

Effects of Radial Diffusion

llgner et al. 2004

Semenov et al. (2006) in prep

- Three-layer structure is preserved, because t_{chem} is small in the surface and midplane
- Species formed on grains (ex. H_2CO) are enhanced by vertical mixing
- Ionization fraction is not modified
- \succ Ionization can be enhanced by mixing if grains have grown or sedimented.

Semenov et al. (2006) in prep

- Three-layer structure is preserved, because t_{chem} is small in the surface and midplane
- Species formed on grains (ex. H_2CO) are enhanced by vertical mixing
- Ionization fraction is not modified
- ≻Ionization can be enhanced by mixing if grains have grown or sedimented.

 Vertical structure is preserved but warm molecular layer is spread out in z direction: Willacy et al. 2006

Fig. 4.—Fractional abundances with respect to H₂ as a function of height z above the midplane for R = 100 AU and a model time of 1 Myr. Lines are as in Fig. 3. Diffusion increases the peak abundance and the vertical extent of many molecules. At this radius, N₂H⁺ traces the midplane, but NH₃ peaks in the molecular layer.

 $K = D = 10^{16}$ corresponds to $\alpha = 10^{-2}$ assuming $\nu = D$

Combined Chemical/Thermal

Models

- Chemical composition influences the disk structure by mediating the abundances of coolants
- Disk gas heating
 - accretion (highly uncertain)
 - dust-gas coupling (full coupling expected for $n > 10^6$ cm⁻³
 - UV radiation (will depend on presence/absence of PAHs)
 - · H_2 fluorescence with collisional de-excitation
 - · photoelectric effect
 - H_2 dissociation
 - · Carbon ionization
 - X-rays
 - H₂ formation
 - Cosmic Rays
- Disk gas cooling
 - line emission
 - dust-gas coupling
- Dust/gas are not thermally coupled in upper layers

• Models:

Kamp et al. 2005 (IAU) Jonkheid et al. 2004 Aikawa and Nomura 2006

see Hollenbach and Tielens RVMP 1999