Cosmic Microwave Background

Valeria Pettorino University of Heidelberg

2nd Azores School on Observational Cosmology

5th June 2014

Plan of the lectures

Lecture 1 Physics of the CMB: Thermal history & recombination Acoustic Oscillations Boltzmann equation Harmonic expansion

Lecture 2 CMB Spectra Polarization and CMB lensing Status of observations

References: Cosmological perturbations: Kodama & Sasaki 1984 CMB physics and anisotropies: Hu & Dodelson 2002 Normal modes and Boltzmann equation: Hu & White 1997 Other notes: <u>http://arxiv.org/abs/1302.4640</u> by J. Lesgourges. Experiments: lambda.gfsc.nasa.gov

What we learned so far

- Tight fluid photons-baryons
- (Perturbed) Boltzmann equation: the story of the distribution function
- Spectra as 2 point correlation function of the coefficients of the expansion in spherical harmonics

$$\langle a_{lm}a_{l'm'}^* \rangle = \delta_{ll'}\delta_{mm'}C_l$$
$$\frac{\delta T}{T}(\hat{n}) = \sum_{lm}a_{lm}Y_{lm}(\hat{n})$$

Oscillations of a tight fluid, equal amplitude

Baryon dragging

enhances compressions, shifts equilibrium point

Gravitational driving

Enhances small scales with respect to large ones

Diffusion damping

Suppresses small scales

Doppler effect

Out of phase of 90 degrees, equal amplitude

Square both

Modified along the line of sight

Start from monopole (I = 0, the 3K) and dipole (I = 1) when here is tight coupling and then populate smaller scales during free streaming.

Polarization

Before recombination

The photon temperature is isotropic and photons are well thermalized because of efficient interactions.

Before decoupling photons are, on average, un-polarized.

No net polarization can come from isotropy.

Evolution of the universe

Last scattering and quadrupole anisotropy

When Thomson scattering becomes inefficient, the photon temperature is no longer isotropic.

A given electron will scatter simultaneously some hotter photons coming from one direction and some colder photons coming from another direction.

CMB photons are linearly polarized: have a different polarization amplitude and orientation depending on the direction in the sky.

How much polarized?

The quadrupole is zero at early times and then grows while approaching decoupling.

Any source of quadrupole anisotropy leaves its imprint in the polarization.

The fraction depends on the duration of last scattering. It is 10% on a characteristic scale of degree scale. Since temperature anisotropies are at the 10⁻⁵ level, the polarized signal is at (or below) 10⁻⁶ level representing a significant experimental challenge.

Intensity tensor

$$I_{ab} = \frac{1}{2} I \sigma_0 + P_{ab}$$
Total Intensity
Polarization tensor
$$P_{ab} = \frac{1}{2} (Q \sigma_3 + U \sigma_1 - V \sigma_2)$$

$$\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Q, U, V Stokes parameters

Q: linear polarization; U linear polarization rotated of 45°

V circular polarization

Not convenient under rotations

(A bit) more formally

Analogously to what we did for temperature, we can expand Stokes parameter in a convenient basis, on tensor normal modes.

$$\Theta(\eta, \vec{x}, \vec{n}) = \frac{\delta T}{T} = \int \frac{d^3 k}{(2\pi)^3} \sum_l \sum_{m=-2}^2 \Theta_{lm}(\eta, \vec{k}) G_{lm}(\vec{k}, \vec{x}, \hat{n})$$
$$(Q \pm iU)(\eta, \vec{x}, \vec{n}) = \int \frac{d^3 k}{(2\pi)^3} \sum_l \sum_{m=-2}^2 (E_{lm} \pm iB_{lm} \pm 2G_{lm})$$

Boltzmann equations for polarization

These coefficients satisfy the Boltzmann polarization equation:

Summing over many waves, we get the following polarization patterns around **hot** and **cold** spots:

E-mode (grad) B-mode (curl)

Courtesy of D.Baumann

Projection of the quadrupole anisotropy on the transverse plane (with respect to the wavevector) gives the polarization pattern.

Polarization maps are represented with sticks of different size and orientation in different points: these can be related to the magnitude and orientation of the quadrupole anisotropy on the last scattering surface.

Origin of E and B modes

Hence the polarization of the CMB is a potentially useful probe of the level of gravitational waves in the early universe

Importance of polarization

If the temperature anisotropies we observe are indeed the result of primordial fluctuations, their presence at last scattering would polarize the CMB: good test that we understand the theory.

Can break some degeneracies. Ex. Amplitude/reionization; SW and Doppler terms.

Different sources of temperature anisotropies (scalar, vector and tensor) give different patterns in the polarization.

Test of inflation

Phase: T vs polarization

Polarization is sourced by quadrupole anisotropies in intensity.

The quadrupole in intensity is sourced by the dipole, so polarization is directly proportional to the dipole at recombination.

E and B modes are out of phase with T anisotropies.

The (primordial) polarization peaks at angular scales smaller than the horizon at last scattering due to causality

We expect also a non-zero correlation with Temperature maps.

$$C_{l}^{EE} = \frac{1}{2l+1} \sum_{m} |E_{lm}|^{2} \qquad C_{l}^{BB} = \frac{1}{2l+1} \sum_{m} |B_{lm}|^{2}$$
$$C_{l}^{TE} = \frac{1}{2l+1} \sum_{m} \Theta_{lm} E_{lm}$$

 C_{I}^{TB} , C_{I}^{EB} are expected to be zero, they have different parity

B modes and inflation

During inflation, quantum fluctuations can excite tensor perturbations

The amplitude of gravitational waves follow Einstein equation for tensor modes:

$$\ddot{H}_T^{\pm 2} + 2\mathcal{H}\dot{H}_T^{\pm 2} + k^2 H_T^{\pm 2} = 8\pi G a^2 p \pi_T^{\pm 2}$$

The power spectrum of GW amplitude is proportional to the expansion H^2 (just like for the inflaton) and therefore to the potential V(ϕ) of inflation.

Measurement of B modes determines the energy scale of inflation $E_i = V^{1/4}$

$$B_{peak} \approx 0.024 \left(\frac{E_i}{10^{16} GeV}\right)^2 \mu K$$

Deriving from physics at this epoch

Lensing also generates B modes.

Tensor to scalar ratio

$$r \equiv 4 \frac{P_{H_T}^2}{P_R^2} = 16\epsilon$$

In turn, the slow roll parameter depends on the inflaton

$$\epsilon = \frac{1}{2M_{Pl}^2} \left(\frac{d\phi}{d\ln a}\right)^2$$

A large r implies a large slow roll parameter and a large variation of the inflaton

If the tensor amplitude is large, tensors can also feed C_{I}^{TT} at large scales (then decay quickly inside the horizon). A big r would distort the TT spectrum at I < 100.

CMB lensing

Gravitational lensing of the CMB

As CMB photons travel from the surface of last scattering to the Earth, their paths are deflected by gravitational interactions with matter. This process mixes power between multipoles in the CMB temperature power spectrum,

Smooths the acoustic peak structure and increases the power in the damping tail at small angular scales

Distribution of matter (across history of the Universe) projected on the sky. Darker regions are denser

Lensing encodes information from late time Universe
Deflection

 $\tilde{\Theta}(\hat{n}) = \Theta(\hat{n} + \nabla\psi)$

Lensed

Unlensed calculated in the deflected direction

Deflection is a couple of arcminutes, but correlation among different deflection angles gives power to lensing on degree scales, where CMB peaks are.

The deflection field (the lensing potential) can be related to the matter power spectrum.

The lensing potential, convolved with the Temperature power spectrum transfers power from large to small scales

First direct measurement: ACT 2011, 4 σ (Das et al, update in 2013)

Then SPT in 2012 (Van Engelen et al, 6σ)

Now Planck in 2013 (Planck Collab XVII, 250)

Data processing

Time ordered data

From time ordered data to maps

Time ordered data stream indexed by t

$$d_t = P_{ti}\Theta_i + n_t$$

Where i denotes the pixelized position.

The mapping between time ordered data and pixel space needs to account for beam, rotation, unequal coverage of pixels, ...

The noise n_t recovered from some distribution with known power spectrum

$$\langle n_t n_{t'} \rangle = C_{d,tt'}$$

From time ordered data to maps

Foregrounds

In addition, the best estimator $\hat{\Theta}_i$ for the underlying map Θ_i needs to take into account foregrounds.

$$\hat{\Theta}_i^{\nu} = A_i^{\nu} \Theta_i + n_i^{\nu} + f_i^{\nu}$$

Low frequencies:

synchrotron free-free (free electrons scattering off ions without being captured) radio point sources;

High frequencies:

Dust Cosmic Infrared Background (CIB).

From time ordered data to maps

 Correct for systematics: detector noise and response, cooling instabilities and seasonal effects, cosmic rays, pointing errors, shape of the beam, ...

Commander: Low-Frequency Emission Amplitude @ 30 GHz

Dominates at low frequencies

Commander: "discovery" CO map @ 100 GHz

Commander: Dust Amplitude @ 353 GHz

Dominates at high frequencies

COM_Mask_CMB-union_2048_R1.10 U73

2048 NESTED GALACTIC

- Start with time ordered data (about 10¹⁰ numbers for a satellite experiment)
- Compressed to a map 10⁷ numbers
- Compressed to a power spectrum (Gaussian statistics) independent of m (isotropy) 10³ numbers
- Compressed to cosmological parameters (assuming a cosmological model) (order 10 numbers)

Current observations

COBE to WMAP (x35 better resolution)

COBE 1989

WMAP 2001

ACT is a 6 meter telescope in the Atacama Desert in the north of Chile. SPT is a 10 meter diameter telescope operating at the NSF South Pole research station.

CMB anisotropies

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada

The Planck project

- First proposed to ESA in 1993 (COBRAS + SAMBA)
- Selected in 1996 by ESA
- Aims: ultimate measurement of the CMB temperature anisotropies reaching a limit mainly given by astrophysical foreground; polarization.
- Launch in 2009

 Nominal mission completed in November 2010 (15.5 months). In practice, twice the nominal mission (full surveys: 5 HFI; 8 LFI)

(2013 data release is based on the nominal mission)

Placed in orbit around L2. Scans the entire sky twice per year.

The spacecraft spins with 1 rotation per minute, tracing circles on the celestial sphere.

Multiple passes over same sky by each detector at each position of the axis.

State of the art in 1996

From Planck (COBRAS/SAMBA) Redbook, 1996

http://www.rssd.esa.int/SA/PLANCK/include/report/complete.pdf

Planck detectors and technological challenge

• HFI:

50 bolometers; 6 frequencies: 100, 143, 217, 353, 545, 857 GHz; Complex cryogenic system, cooling at 0.1K (with He3 + He4). Ended on 14th Jan 2012. • Three complex chains (optical, electronic and cryogenic systems) had to be integrated

• LFI:

22 radiometers in total (low noise HEMT amplifiers);

3 frequencies: 20,44,70 GHz; cooling at 20 K with He4 only. Ended in autumn 2013.

WMAP Center Freq.	23	33	41	61	94
Angular resolution (FWHM arcmin)	49	37	29	20	12,6
Sensitivity in I [µK.deg], 1 yr (8 yr)	12.6 (4.5)	12.9 (4.6)	13.3 (4.7)	15.6 (5.5)	15.0 (5.3)

PLANCK	LFI			HFI					
Center Freq (GHz)	30	44	70	100	143	217	353	545	857
Angular resolution (FWHM arcmin)	33	24	14	10	7.1	5.0	5.0	5	5
Sensitivity in I [μ K.deg] [$\sigma_{pix} \Omega_{pix}^{1/2}$]	2.7	2.6	2.6	1.0	0.6	1.0	2,9		
Sensitivity in Q or U [μ K.deg] [$\sigma_{pix} \Omega_{pix}^{1/2}$]	4.5	4.6	4.6	1.8	1.4	2.4	7.3		

The sky seen at different frequencies

Power spectrum

ACDM is a very good fit

Quite impressive. From terabytes of data to 6 parameters

Content of the Universe (ΛCDM)

 $\Omega_{de} \equiv \frac{\rho_{de}}{\rho_{cr}}$

Before Planck

After Planck

(1) Contents and expansion Baryon density $\Omega_{\rm b}h^2$ $\Omega_{c}h^{2}$ CDM density Peak position

 $\theta (\sim r_s/D_A)$

(2) Initial fluctuations Amplitude at k=0.05/Mpc A, Spectral index n,

(3) Impact of reionization Reionization optical depth T

(1) Contents and expansion rate Baryon fraction $\Omega_{\rm b}$ Ω_{c} CDM fraction $\Omega_{\Lambda} = 1 - \Omega_{\rm b} - \Omega_{\rm c}$ Cosmol constant fraction H₀ Expansion rate

(2) Late-time size of fluctuations Amplitude on 8 Mpc/h scales σ_8

(3) Reionization Redshift of reonization

Z_{re}

Planck did a lot more than presented here

Products available on-line (PLA)

http://www.sciops.esa.int/ index.php? project=planck&page=Planc k_Legacy_Archive

Summary list of main results

- Gravitational Lensing
- Curvature (flat geometry)
- Dark Energy (compatible with Λ)
- Neutrino masses (no detection)
- Extra relativistic particles (N_{eff} consistent with 3)
- Isotropy (consistent)
- Non-Gaussianity (strong limits)
- Spectral index (deviates from 1 at 6 sigma)
- Inflation (further constraints)
- Topology of the Universe and defects (strong limits)
- Detection of the cosmic dipole

... in other words Λ CDM is a good fit.

Curvature and flatness

The geometry of the Universe is consistent with spatial flatness to percent level using CMB data alone. Need for (something like) Dark Energy from CMB alone

First done combining WMAP+SPT, Story etal 2012

lanck

1. Constant w:

Dark Energy

 $w = -1.13^{+0.24}_{-0.25}$ (95%; *Planck*+WP+BAO),

 $w = -1.24^{+0.18}_{-0.19}$ (95%; *Planck*+WP+H₀),

2. Varying (taylor expanded) w:

$$w(a) \equiv \frac{p}{\rho} = w_0 + (1-a)w_a$$

3. Early Dark Energy < 1%

Wetterich 2004 Doran & Robbers 2006 Pettorino et al 2013

w

Planck+WP+BAO

Planck+WP+SNLS

Inflation

Models that fit best have a canonical kinetic term and a single field slow rolling a (preferably concave) potential.

Also the quadratic potential is now at the boundary (2sigma).

Neutrinos and N_{eff}

Limits on Σm_v at 95%: <0.66 eV (Planck+WP+highL) <1.08 eV (same, but marginalizing over AL) <0.85 eV (Planck+lensing+WP+highL) <0.23 eV (Pl+WP+highL+BAO)

$$\rho_{\nu} = N_{eff} \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \rho_{\gamma}$$

Mangano etal 2005

In the standard scenario (with 3 neutrinos)

 $N_{eff} = 3.046$

$$\begin{array}{c}
1.0 \\
- Planck+WP+highL \\
+ BAO \\
+ H_0 \\
+ BAO+H_0 \\
0.4 \\
0.2 \\
0.0 \\
2.4 \\
3.0 \\
3.6 \\
4.2 \\
N_{eff}
\end{array}$$

Compatible with 3

Geometrical degeneracy

Models with the same primordial power spectrum, matter densities and same angular diameter distance to LSS will have almost identical CMB TT spectra.

Degeneracy can be broken with:

- Lensing
- Astrophysical datasets probing late time physics (BAO, SNae, HST, ...)

We need to assess whether the discrepancy with other datasets in a LCDM model with different datasets depends on poorly understood systematic effects.

Better to avoid combining many datasets together.

Polarization

2

0

G_{lon} (deg)

-2

-1

2

0 G_{ton} (deg) -1

-2

Background Imaging of Cosmic Extragalactic Polarization

The Dark Sector Lab

SPT

jcecube

BICEP2 Keck

Linet

50 @ 100 GHz

48 @ 150 GHz

512 @ 150 GHz

BICEPI observed from 2006-2008 with 98 detectors

BICEP2 started observing in 2010 with 512 detectors

2011-2016

5 x 512 @ 150 GHz

The first three of five **Keck Array** telescopes started to observe in early 2011, each with 512 detectors. The other two in summer 2012. From 2011 to 2013, all receivers observed at 150 GHz. In the 2013-2014 summer season, two out of the five were converted to 100 GHz.

BICEP3 will begin observing in 2015 with a total of 2560 detectors, all at 100 GHz

calculated on 5 bandpowers

Foregrounds

Future Keck Array observations at 100 GHz and Planck observations at higher frequencies will be crucial to determine whether the signal is of primordial origin

Future observations

E modes:

Planck, ACTPol, SPTPol

B modes (primordial range):

- Keck Array, EBEX, SPIDER, CLASS, PIPER
- Future satellites? LiteBIRD, PRISM, PIXIE

B modes (lensing range):

- SPTPol, ACTPol, POLARBEAR
- Aiming for mass limits on neutrinos of 0.05-0.1 eV
- Probe for Dark Energy at $z \approx 1-2$

