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Overview

Probability distributions
Bayes theorem

Parameter estimation and model
selection

Practical aspects

— (Gaussians
— Fisher matrix / error forecasts
— MCMC



Probability distribution(s)

Space of Results Q (e.g. coin: Q = {M,V¥})

Probability measure P: P(A)=0, P(Q2)=1,
P(A;+A,)=P(A,)+P(A,) for Al, A2 disjoint

Random variable X : Q -> R (e.g. coin: X(N)=1)

Probability density function (pdf): P(x) = prob(X=x)
-> P(x)=0, 2, P(x) =1

Cumulative distribution function (cdf):
F(x)=prob(X=<x) -> F(x)=2,.,P(u)

Joint distribution: P(x,y)=prob(X=x AND Y=y)

Marginal distribution: P(x) = prob(X=x) = X, P(x,y)
(and the same for vy)

Conditional distribution: P(x|y) = prob(X=x IF Y=y)
Theorem: P(X,y) = P(x|y) P(y) = P(y|x) P(x)
Expectation value: E[g(X)] = Z, g(X) P(x)



mean, variance, etc

« Mean: u=E[X]=Z, X P(X) -> E[cX] = ¢ E[X]
« Variance 0%=E[X?]-E[X]?=Z, (X-M)? P(x)

-> 02[cX] = c? o?[X]
- Covariance Cov(X,Y) = X, , (X-M,)(Y-H,) P(X,y)
« Cov(X,Y) = E[XY] = pp,

« X,Y independent <-> P(X,y) = P(x) P(y)

-> P(x]y) = P(x,y)/P(y) = P(x)
and Cov(X,Y) =0

e 02[XxY] = 0?[X] + o?[Y] £ Cov(X,Y)



Normal (Gaussian) pdf

Normal distribution:
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mean: J, variance: o2
Z = (X-u)/o reduced variable, P(z) = N(0,1)
Generic limiting case (central limit theorem)

If X;, X5, ..., X, indep. N(O,1): x°= Z; X2 has the
so-called chi-squared distribution with n degrees
of freedom

For x2: mean n, variance 2n



more on Normal pdf

Gaussian pdf is also ‘least informative’ (maximum
entropy) choice if only mean and variance known

In reality, often exponential decrease at high x/o is
too steep, ‘heavy tails’

Generalisation for vector of random variables
X=(X{,X5,...,X,,): multivariate Gaussian
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P(z) =

J

— given by mean vector g and covariance matrix C (symmetric,

positive -> eigenvalues are real & positive)

— if X; independent: C=diag(o,?,...,0,%) and

P(z) = H P(x;) product of univariate pdf’ s
1=1



Statistics

- Typical case: Data D={(x,,y;,0,)} [O: error on y]

« Assumption: P(y,|x;,y(x),0,)= N(y(x),0:%) indep.

 In general y(x) is a function of parameters 6,
e.g. y(x) = a*x+b -> 8={a,b}
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x2 has chi-square distribution with v= (# data points) -
(# parameters) degrees of freedom

best fit at g—gzo ( ‘maximum likelihood’, ML)
can check ‘goodness of fit" of minimal x2

Taylor expansion of at x> ML -> H,, = %g;_X;
-> Cov(8,,8,)=(H"1);, o

P(D|B) only normal in 6 if model y(x;0) is linear in 6!




Bayesian statistics

« In general we want to know the underlying
parameters 0, i.e. P(6|D), not P(D|0)

« P(O|D) has no probabilistic interpretation in a
frequentist sense: the parameters 6 are not
random variables

« Bayesian interpretation: ‘limited knowledge’
 Formally just application of Bayes theorem:

P(D,0) = P(D|0)P(0) = P(9|D)P(D) = P(0|D) = P(D|6)

P(6)

P(D)

« Mathematical proofs exist that construction is at

least self-consistent (cf eg Cox theorem)




Bayes theorem example

 You have a mind-scanner that can identify a
terrorist with 99.99% probability and gets it
wrong in only 0.01% of cases

« 1in 1000000 is a terrorist

« should you shoot people who fail the mind-
scanner test?



Bayes theorem example

 You have a mind-scanner that can identify a
terrorist with 99.99% probability and gets it
wrong in only 0.01% of cases

« 1in 1000000 is a terrorist

« should you shoot people who fail the mind-
scanner test?

X: is a terrorist, Y: fails mind-scanner
P(Y|X) = 0.9999
P(X|Y) = P(Y|X)P(X)/P(Y) ~ 1*¥10°6*104 ~ 10-2!!!



Parameter estimation

P(D|B) : likelihood L(B) -> ‘given’ by experiment
P(B|D) : posterior -> that’ s what we want
P(6) : prior [P(D) : left for later]
Prior: necessary, measure on parameter space,
typical choices:

— P(8) constant -> ‘flat prior’, P(D|6) ~ L(0)

— P(B) ~ 1/6 -> prior flat in log(B) -> no scale for 6
(there is a whole literature on how to choose priors)
What to estimate?

— Mean & error: yg = 24 6 P(6|D), C(6,,6;) [as before]

— Maximum: maxg P(6|D) -> max. likelihood for flat prior
— ‘credible regions’, e.g. 95% parameter volume



Explicit example

Very simple example:

« D ={x, i=1,...,n} drawn indep. from N(u,c?)

« Estimatepandino

1.Priors: P(u)=const, P(In g) = const

2. Likelihood: product of P(x;|4,0%) over all points
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3. Posterior: P(u, In o|D) ~ P(D|y,In o)



Explicit example |l

. Maximum of posterior = maximum of likelihood,
itis at {y=2,0=5} (compute dL/d6=0)

. Assume o known -> want P(u|D,0)

L =\2
P(ul{zi}iy, 0) mexp{—n(u zx) }

20
— P(p) = N(z,0°/n)
. Assume both gy and o unknown, what is P(c|D)?
P(Dlo) = [ P(D.plo)dn = [ P(Dlon) Plu)d

Gaussian integral for P(Ju)=const, ~ (MacKay)
can be done, now maximum at —
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Explicit example Il

4. Both p and o unknown (as 3), what is P(p|D)?

o0 Y 2
P(,u|D):/P(,u,U|D)dao</0 g~ (D) exp{—n('u z)” +n3 }da

202
can be solved e.g. by setting u = A/c?

— P(u|D) x A7"% x 1/ (n(p—z)% + nS2)n/2

(normalisation e.g. from /duP(MD) =1 )
-> Student’s t distribution [notice heavy tails!]

(here resulting from superposing Normal
distributions with different widths)

-> this is the pdf to use when variance unknown!



Model selection

So far we always assumed model to be known.
If not, then we can add overall dependence on M

_ P(6|M)
P(O|D, M) = P(D\H,M)[P(D‘M)]

we want to know P(M|D)
Bayes again: P(M|D) =[P(D|M)|P(M) / P(D)
And P(M,|D) P(My) P(D|M,) B P(Ml) Bayes factor

(absolute value

P(M;|D)  P(Mz) P(D|M2)  P(M>)
] of P(D|M) not so
Since /P(9|D7 M)do =1 instructive)

(likelihood used as f(8)
but normalised wrt D!)

[P(D\M) - / d&P(D[G,M)P(H]M)J




goodness of fit vs model selection

250 coin tosses: 140 heads, 110 tails (<- D)
Random or not?

(nh + nt)'
nh!nt!

Likelihood: binomial P(ny,n.|p) = p" (1 —p)™

coin unbiased: p=1/2 => P(n,=2140|p=1/2) ~ 0.033
-> looks bad!



goodness of fit vs model selection

250 coin tosses: 140 heads, 110 tails (<- D)
Random or not?

(nh -+ nt)'

Likelihood: binomial P(nj,n:|p) = I |
np- Mt

p"" (1 —p)™

coin unbiased: p=1/2 => P(n,=2140|p=1/2) ~ 0.033
-> looks bad!

Bayes: My: p=1/2, M;: p free parameter, P(p) uniform in [0,1]

P(D|Mg) oc 1 /2"
~ (.48

P(D|M)
nplng!

1
P(D|M dpp™ (1 — p)™ = P(D|My)
(D] 1)“/0 (=P = o

-> bad absolute goodness of fit should make you suspicious, but
still need to find a better model!



model selection

P(p|n,.=140,n,=110 Occams Razor:
(pl- " t ) ' p=140/250 Best p is still surprisingly

I
12} c! close to p=1/2, relative
: 3 to prior width.
[ I
| % I
][ = : but even for M,: p=0.56
| =1 P(D|M,)/P(D|M,) ~ 6.1
6} I
| : (normally want B >> 10
Al | for a ‘strong’ result)
i |
2t prior

0.0 0.2 04 0.6 0.8 10 P



Practical aspects

Often 10+ parameters (sometimes much more!)
Grid with 5 points on each side: 519 ~ 10/ points
-> how to deal with high-dimensional spaces?

« Analytical approximation: Gaussians
 Numerical methods: MCMC

We would like a simple way to forecast accuracy of
future experiments

« Fisher matrix formalism

« (or just create a fake likelihood and analyze it)



Gaussians

Often likelihood / posterior is also approximately
Gaussian in parameters -> Taylor expansion:

02 In L A
111L(9 lIlL —|— E (99 (99 (9 Hj)—l—...
Here peak § and a blt loosely O = O lnL at peak
P Y % = " 50,00, P

This is just proportional to a Gaussian / Normal
multivariate pdf for the parameters 0:

POIC.1) = e {50 - w"C0 - )

(In general a Gaussian pdf for the data [-> x?] does not imply a Gaussian pdf for
the parameters, only if the model y(x;0) is linear! But: central limit theorem!)




Gaussians

Big advantage:
 Products of Gaussians are Gaussians
N (z; p1, C)N (5 pa, Cz) = AsN(x; u3, C3)
C3=(CT +C3N)™, 3 =Cs3(Crm + Cy o)

Az = N(p1; p2, C1 + Ca)

 We can evaluate Gaussian integrals
— Simple explicit marginalisation:
marginal distribution is again Gaussian
/N T1,..., ey T 1, Oy .odzg = N(2gi1, - 20 0, O)

= (Kg+1,---,1n) and C is just the [q+1,n] submatrix of C

— Compute model probabilities, etc
— Fisher matrix formalism



Errors for Gaussians

Errors given by covariance matrix C = H-1

0? In P(0|D) 2 A A
Inverse of sub-matrix of H: conditional errors
sub-matrix of inverse of H: marginal errors

Constant x2 boundaries:

=6.63
Gaussian approximation! ;
/
A
s Ay == 1.00
Ax? as a Function of Confidence Level and Degrees of Freedom //,‘" /7 "

//z///
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90% 2.71 4.61 6.25 7.78 9.24 10.6
95.4% 4.00 6.17 8.02 9.70 113 12.8

99% 6.63 9.21 113 133 15.1 16.8 /
99.73% 9.00 11.8 142 16.3 18.2 20.1

99.99% 15.1 184 21.1 235 25.7 2738

\"7/{
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(numerical recipes)



Fisher matrix formalism

Fisher information matrix: measures information
about parameters 6,, defined as var(score), or

0%1n L
Fi':<H”>:_<ae.ae.>
iUV

Expectation is taken over data realizations for
given (fixed) model and ‘fiducial’ parameters

Inverse of Fisher matrix can be seen as ‘lower
bound’ on covariance matrix (Cramer-Rao bound)

All results for Gaussians also apply here

Due to expectation value, we don’t need actual
data realizations, only the specification of the
experiment



Calculating Fisher matrices

« Explicit computation... simple form for normal data:
1
Fz] — (agi,uTC_lé)Qj/J/) —+ 5’51" (C'_l(%iCC'_lagj C)

 If you have a set of observables O, and know the
(expected) errors o, on O,, then you can do error

propagation: 00, 1 90,
Fy; =
/ ; ((96)2 O']% 893

— this generalizes in the obvious way to a covariance matrix
for the O,

— If you have relative errors 6, = 0,/0O, then

OlnOr 1 0ln O
00; 5% 00,

F =
k



simple Fisher example
Let’s revisit the simple Gaussian example:

1 n(p — )% + nS?
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second derivatives of In(L) and expectation:
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— The Fisher matrix is diagonal = errors independent
— error on Y: o/Vn, error on o: o/V(2n)

— no actual data realization is required

— the true posterior of o is non-Gaussian



Markov-Chain Monte Carlo

Aim: create ensemble of parameter samples {61}
that are drawn from posterior pdf, i.e.

P(B|D) ~ 1/N Z;, 5(6-81))

-> expectation values: <g(8)> ~ 1/N =, g(6)

-> marginalisation becomes projection, just drop
the parameters that you want to marginalise

-> credible region: find volume enclosing x% of
points (marginalise first for less dimensions)

Most popular algorithm: Metropolis-Hastings



Metropolis-Hastings

(0. init: choose random point X in parameter space \
1. step: choose new point y from proposal distribution g(y|x)
2. test: accept new point with probability min[1,P(y)/P(x)] (*)
3. if accepted set x=y

\4. store x (even if not changed!), go to 1 and repeat /

(*) this condition assumes symmetric proposal distribution,
q(y|x) = q(x|y) otherwise acceptance prob. slightly more

complicated, min[1,{P(y)q(y[x)}/{P(x)a(x]y)}].

«  Burn-in: initial period, should be discarded

« Convergence: need to collect samples until we have a fair
sample of target distribution, this can be difficult to judge
(impossible in general). Diverse criteria exist.



Metropolis-Hastings |l

In theory the algorithm converges independently of
the choice of proposal distribution g(x|y), in
reality this tends to be the most important choice.

Usual choice is 2.3*Gaussian centered on x with
parameter covariance matrix (-> rotated
ellipsoid).

Of course to do this one needs to know the answer
-> re-compute covariance matrix on the fly, but in
principle need to fix it for samples used in
analysis.



small project

get (simulated) data [x;,Y,;,0;] from here:
http://mpej.unige.ch/~kunz/poly stat.dat.gz

model: y(x)=ay,+a;x+a,x?
y; are Gaussian around y(Xx;) with error o,

write a little MCMC program to find
parameters and correlations

check by computing (semi-analytically)
dx?/da, = 0 [easy for linear models]

can also try model-comparison to check
models y(x) = Z, a; X' for different i,



Practical model selection

The integration over (Likelihood)x(prior) is normally
hard, MCMC chains are not good enough.

 Numerical methods: thermodynamic integration,
nested sampling

« Use Gaussian approximation (possibly with
several Gaussians: mixture models)

 For nested models (the simpler model is same as
general model with some parameters fixed)
Savage-Dickey: Bayes factor is just posterior/
prior of general model at nested point,
marginalised over all common parameters.



Savage-Dickey example

P(pIn,=140,n=110)
12|
10}

81

unbiased coin

=140/250

(MO: p="%

M,: p free
M,: p = 140/250

M, and M, nested in M,

Savage-Dickey:
P(D|Mj) _ P(p|D)

B — —
LT P(DIMy) — P(p)
B,, =12.7

\_

prior

0.6

0.8 1.0 P



Summary

Bayes: P(6|D) ~ P(D|6) P(8)

Prior is an integral part of method (but posterior
not very sensitive to it if data is any good)

Bayesian statistics allows for (relatively)
straightforward manipulation of probabilities

Non-trivial examples tend to need MCMC or
Gaussian approximations

Model selection: P(M|D)

Bayes factor By, =P(D|M,)/P(D[M;) ( ‘betting odds’)
want |In(B)| > 2-3 for strong results

Model selection is much more sensitive to prior



