Introduction to (mostly Bayesian) statistics

Martin Kunz
Université de Genève

Overview

- Probability distributions
- Bayes theorem
- Parameter estimation and model selection
- Practical aspects
- Gaussians
- Fisher matrix / error forecasts
- MCMC

Probability distribution(s)

- Space of Results Ω (e.g. coin: $\Omega=\{\uparrow, \downarrow\}$)
- Probability measure $P: P(A) \geq 0, P(\Omega)=1$,
$P\left(A_{1}+A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)$ for A1, A2 disjoint
- Random variable $X: \Omega->R$ (e.g. coin: $X(\uparrow)=1$)
- Probability density function (pdf): $P(x)=p r o b(X=x)$ -> $P(x) \geq 0, \Sigma_{x} P(x)=1$
- Cumulative distribution function (cdf): $F(x)=\operatorname{prob}(X \leq x)->F(x)=\Sigma_{u \leq x} P(u)$
- Joint distribution: $P(x, y)=p r o b(X=x$ AND $Y=y)$
- Marginal distribution: $P(x)=\operatorname{prob}(X=x)=\Sigma_{y} P(x, y)$ (and the same for y)
- Conditional distribution: $P(x \mid y)=\operatorname{prob}(X=x$ IF $Y=y)$
- Theorem: $P(x, y)=P(x \mid y) P(y)=P(y \mid x) P(x)$
- Expectation value: $E[g(X)]=\Sigma_{x} g(x) P(x)$

mean, variance, etc

- Mean: $\mu=E[X]=\Sigma_{x} x P(x)$-> $E[c X]=c E[x]$
- Variance $\sigma^{2}=E\left[X^{2}\right]-E[X]^{2}=\Sigma_{x}(x-\mu)^{2} P(x)$ $->\sigma^{2}[c X]=c^{2} \sigma^{2}[X]$
- Covariance $\operatorname{Cov}(X, Y)=\Sigma_{x, y}\left(x-\mu_{x}\right)\left(y-\mu_{y}\right) P(x, y)$
- $\operatorname{Cov}(X, Y)=E[X Y]-\mu_{x} \mu_{y}$
- X, Y independent $<->P(x, y)=P(x) P(y)$
$->P(x \mid y)=P(x, y) / P(y)=P(x)$
and $\operatorname{Cov}(X, Y)=0$
- $\sigma^{2}[X \pm Y]=\sigma^{2}[X]+\sigma^{2}[Y] \pm \operatorname{Cov}(X, Y)$

Normal (Gaussian) pdf

- Normal distribution:

$$
P(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]=\mathcal{N}\left(\mu, \sigma^{2}\right)
$$

- mean: μ, variance: σ^{2}
- $Z=(X-\mu) / \sigma$ reduced variable, $P(z)=N(0,1)$
- Generic limiting case (central limit theorem)
- If $X_{1}, X_{2}, \ldots, X_{n}$ indep. $N(0,1): \chi^{2}=\Sigma_{i} X_{i}^{2}$ has the so-called chi-squared distribution with n degrees of freedom
- For χ^{2} : mean n, variance $2 n$

more on Normal pdf

- Gaussian pdf is also 'least informative’ (maximum entropy) choice if only mean and variance known
- In reality, often exponential decrease at high x / σ is too steep, 'heavy tails'
- Generalisation for vector of random variables $\mathrm{X}=\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$: multivariate Gaussian

$$
P(x)=\frac{1}{(2 \pi|C|)^{n / 2}} \exp \left[-\frac{1}{2} \sum_{i, j=1}^{n}\left(x_{i}-\mu_{i}\right) C_{i j}^{-1}\left(x_{j}-\mu_{j}\right)\right]
$$

- given by mean vector μ and covariance matrix C (symmetric, positive -> eigenvalues are real \& positive)
- if X_{i} independent: $C=\operatorname{diag}\left(\sigma_{1}{ }^{2}, \ldots, \sigma_{n}{ }^{2}\right)$ and

$$
P(x)=\prod_{i=1}^{n} P\left(x_{i}\right) \quad \text { product of univariate pdf' } \mathbf{s}
$$

Statistics

- Typical case: Data $D=\left\{\left(x_{i}, y_{i}, \sigma_{i}\right)\right\}$ [σ : error on y]
- Assumption: $\mathrm{P}\left(\mathrm{y}_{\mathrm{i}} \mid \mathrm{x}_{\mathrm{i}}, \mathrm{y}(\mathrm{x}), \mathrm{o}_{\mathrm{i}}\right)=\mathrm{N}\left(\mathrm{y}\left(\mathrm{x}_{\mathrm{i}}\right), \mathrm{o}_{\mathrm{i}}{ }^{2}\right)$ indep.
- In general $y(x)$ is a function of parameters θ, e.g. $y(x)=a * x+b->\theta=\{a, b\}$
\Rightarrow define $\chi^{2}=\sum_{i} \frac{\left[y_{i}-y\left(x_{i} ; \theta\right)\right]^{2}}{\sigma_{i}^{2}} \rightarrow P(D \mid \theta) \propto e^{-\chi^{2} / 2}$
χ^{2} has chi-square distribution with $v=$ (\# data points) (\# parameters) degrees of freedom
- best fit at $\frac{\partial \chi^{2}}{\partial \theta_{j}}=0$ ('maximum likelihood', ML)
- can check 'goodness of fit' of minimal χ^{2}
- Taylor expansion of at χ^{2} ML -> $H_{j k} \equiv \frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial \theta_{j} \theta_{k}}$
$->\operatorname{Cov}\left(\theta_{\mathrm{j}}, \theta_{\mathrm{k}}\right)=\left(\mathrm{H}^{-1}\right)_{\mathrm{jk}}$
- $P(D \mid \theta)$ only normal in θ if model $y(x ; \theta)$ is linear in θ !

Bayesian statistics

- In general we want to know the underlying parameters θ, i.e. $P(\theta \mid D)$, not $P(D \mid \theta)$
- $P(\theta \mid D)$ has no probabilistic interpretation in a frequentist sense: the parameters θ are not random variables
- Bayesian interpretation: ‘limited knowledge’
- Formally just application of Bayes theorem:

$$
P(D, \theta)=P(D \mid \theta) P(\theta)=P(\theta \mid D) P(D) \Rightarrow P(\theta \mid D)=P(D \mid \theta) \frac{P(\theta)}{P(D)}
$$

- Mathematical proofs exist that construction is at least self-consistent (cf eg Cox theorem)

Bayes theorem example

- You have a mind-scanner that can identify a terrorist with 99.99\% probability and gets it wrong in only 0.01% of cases
- 1 in $1^{\prime} 0000^{\prime} 000$ is a terrorist
- should you shoot people who fail the mindscanner test?

Bayes theorem example

- You have a mind-scanner that can identify a terrorist with 99.99\% probability and gets it wrong in only 0.01% of cases
- 1 in $1^{\prime} 0000^{\prime} 000$ is a terrorist
- should you shoot people who fail the mindscanner test?

X : is a terrorist, Y : fails mind-scanner
$P(Y \mid X)=0.9999$
$P(X \mid Y)=P(Y \mid X) P(X) / P(Y) \sim 1 * 10^{-6 *} 10^{4} \sim 10^{-2}!!!$

Parameter estimation

- $P(D \mid \theta)$: likelihood $L(\theta)$-> 'given' by experiment
- $P(\theta \mid D)$: posterior -> that's what we want
- $P(\theta)$: prior [P(D) : left for later]
- Prior: necessary, measure on parameter space, typical choices:
- $\mathrm{P}(\theta)$ constant -> 'flat prior', $\mathrm{P}(\mathrm{D} \mid \theta) \sim \mathrm{L}(\theta)$
- $P(\theta) \sim 1 / \theta->$ prior flat in $\log (\theta)->$ no scale for θ
(there is a whole literature on how to choose priors)
- What to estimate?
- Mean \& error: $\mu_{\theta}=\Sigma_{\theta} \theta P(\theta \mid D), C\left(\theta_{i}, \theta_{j}\right)$ [as before]
- Maximum: $\max _{\theta} \mathrm{P}(\theta \mid \mathrm{D})$-> max. likelihood for flat prior
- 'credible regions’, e.g. 95\% parameter volume

Explicit example

Very simple example:

- $D=\left\{x_{i}, i=1, \ldots, n\right\}$ drawn indep. from $N\left(\mu, \sigma^{2}\right)$
- Estimate μ and In σ

1. Priors: $P(\mu)=$ const, $P(\ln \sigma)=$ const
2. Likelihood: product of $P\left(x_{i} \mid \mu, \sigma^{2}\right)$ over all points

$$
\begin{aligned}
P(D \mid \mu, \sigma) & =\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left\{-\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right\} \\
= & \frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left\{-\frac{n(\mu-\bar{x})^{2}+n S^{2}}{2 \sigma^{2}}\right\}
\end{aligned}
$$

$$
\left(n \bar{x}=\sum_{i} x_{i}, n S^{2}=\sum_{i}\left(x_{i}-\bar{x}\right)^{2}\right) \text { sufficient statistics }
$$

3. Posterior: $\mathrm{P}(\mu, \ln \sigma \mid \mathrm{D}) \sim \mathrm{P}(\mathrm{D} \mid \mu, \ln \sigma)$

Explicit example II

1. Maximum of posterior = maximum of likelihood, it is at $\{\mu=\bar{x}, \sigma=S\}$ (compute $\mathrm{dL} / \mathrm{d} \theta=0$)
2. Assume σ known -> want $\mathrm{P}(\mu \mid \mathrm{D}, \sigma)$

$$
\begin{aligned}
& P\left(\mu \mid\left\{x_{i}\right\}_{i=1}^{n}, \sigma\right) \propto \exp \left\{-\frac{n(\mu-\bar{x})^{2}}{2 \sigma^{2}}\right\} \\
& \rightarrow P(\mu)=\mathcal{N}\left(\bar{x}, \sigma^{2} / n\right)
\end{aligned}
$$

3. Assume both μ and σ unknown, what is $\mathrm{P}(\sigma \mid \mathrm{D})$?

$$
P(D \mid \sigma)=\int P(D, \mu \mid \sigma) d \mu=\int P(D \mid \sigma, \mu) P(\mu) d \mu
$$

Gaussian integral for $P(\mu)=$ const, can be done, now maximum at

$$
\sigma^{2}=\frac{n}{n-1} S^{2}
$$

Explicit example III

4. Both μ and σ unknown (as 3), what is $P(\mu \mid D)$?

$$
P(\mu \mid D)=\int P(\mu, \sigma \mid D) d \sigma \propto \int_{0}^{\infty} \sigma^{-(n+1)} \exp \left\{-\frac{n(\mu-\bar{x})^{2}+n S^{2}}{2 \sigma 2}\right\} d \sigma
$$

can be solved e.g. by setting $u=A / \sigma^{2}$

$$
\rightarrow P(\mu \mid D) \propto A^{-n / 2} \propto 1 /\left(n(\mu-\bar{x})^{2}+n S^{2}\right)^{n / 2}
$$

(normalisation e.g. from $\int d \mu P(\mu \mid D)=1$)
-> Student's t distribution [notice heavy tails!]
(here resulting from superposing Normal distributions with different widths)
-> this is the pdf to use when variance unknown!

Model selection

- So far we always assumed model to be known.
- If not, then we can add overall dependence on M

$$
P(\theta \mid D, M)=P(D \mid \theta, M) \frac{P(\theta \mid M)}{P(D \mid M)}
$$

- we want to know $\mathrm{P}(\mathrm{M} \mid \mathrm{D})$
- Bayes again: $\mathrm{P}(\mathrm{M} \mid \mathrm{D})=\mathrm{P}(\mathrm{D} \mid \mathrm{M}) \mathrm{P}(\mathrm{M}) / \mathrm{P}(\mathrm{D})$
- And $\frac{P\left(M_{1} \mid D\right)}{P\left(M_{2} \mid D\right)}=\frac{P\left(M_{1}\right)}{P\left(M_{2}\right)} \frac{P\left(D \mid M_{1}\right)}{P\left(D \mid M_{2}\right)}=\frac{P\left(M_{1}\right)}{P\left(M_{2}\right)} B_{12}$
- Since $\int P(\theta \mid D, M) d \theta=1$ Bayes factor
(absolute value
of $P(D \mid M)$ not so instructive)

$$
P(D \mid M)=\int d \theta P(D \mid \theta, M) P(\theta \mid M)
$$

(likelihood used as $f(\theta)$ but normalised wrt D!)

goodness of fit vs model selection

250 coin tosses: 140 heads, 110 tails (<-D)
Random or not?
Likelihood: binomial $P\left(n_{h}, n_{t} \mid p\right)=\frac{\left(n_{h}+n_{t}\right)!}{n_{h}!n_{t}!} p^{n_{h}}(1-p)^{n_{t}}$
coin unbiased: $p=1 / 2=>P\left(n_{h} \geq 140 \mid p=1 / 2\right) \sim 0.033$
-> looks bad!

goodness of fit vs model selection

250 coin tosses: 140 heads, 110 tails (<- D)
Random or not?
Likelihood: binomial $P\left(n_{h}, n_{t} \mid p\right)=\frac{\left(n_{h}+n_{t}\right)!}{n_{h}!n_{t}!} p^{n_{h}}(1-p)^{n_{t}}$
coin unbiased: $\mathrm{p}=1 / 2=>P\left(\mathrm{n}_{\mathrm{h}} \geq 140 \mid \mathrm{p}=1 / 2\right) \sim 0.033$
-> looks bad!

Bayes: $M_{0}: p=1 / 2, M_{1}$: p free parameter, $P(p)$ uniform in $[0,1]$
$P\left(D \mid M_{0}\right) \propto 1 / 2^{n_{h}+n_{t}}$
$P\left(D \mid M_{1}\right) \propto \int_{0}^{1} d p p^{n_{h}}(1-p)^{n_{t}}=\frac{n_{h}!n_{t}!}{\left(n_{h}+n_{t}+1\right)!} \quad\left[\frac{P\left(D \mid M_{1}\right)}{P\left(D \mid M_{0}\right)} \approx 0.48\right.$
-> bad absolute goodness of fit should make you suspicious, but still need to find a better model!

model selection

$P\left(p \mid n_{h}=140, n_{t}=110\right)$

Practical aspects

Often 10+ parameters (sometimes much more!)
Grid with 5 points on each side: $5^{10} \sim 10^{7}$ points
-> how to deal with high-dimensional spaces?

- Analytical approximation: Gaussians
- Numerical methods: MCMC

We would like a simple way to forecast accuracy of future experiments

- Fisher matrix formalism
- (or just create a fake likelihood and analyze it)

Gaussians

Often likelihood / posterior is also approximately Gaussian in parameters -> Taylor expansion:
$\ln L(\theta)=\ln L(\hat{\theta})+\frac{1}{2} \sum_{i j}\left(\theta_{i}-\hat{\theta}_{i}\right) \frac{\partial^{2} \ln L}{\partial \theta_{i} \partial \theta_{j}}\left(\theta_{j}-\hat{\theta}_{j}\right)+\ldots$
Here peak $\hat{\theta}$ and a bit loosely $C_{i j}^{-1}=-\frac{\partial^{2} \ln L}{\partial \theta_{i} \partial \theta_{j}}$ at peak
This is just proportional to a Gaussian / Normal multivariate pdf for the parameters θ :

$$
P(\theta \mid C, \mu)=\frac{1}{\sqrt{(2 \pi)^{n}|C|}} \exp \left\{-\frac{1}{2}(\theta-\mu)^{T} C^{-1}(\theta-\mu)\right\}
$$

(In general a Gaussian pdf for the data [-> $\left.\chi^{2}\right]$ does not imply a Gaussian pdf for the parameters, only if the model $\mathrm{y}(\mathrm{x} ; \theta)$ is linear! But: central limit theorem!)

Gaussians

Big advantage:

- Products of Gaussians are Gaussians
$\mathcal{N}\left(x ; \mu_{1}, C_{1}\right) \mathcal{N}\left(x ; \mu_{2}, C_{2}\right)=A_{3} \mathcal{N}\left(x ; \mu_{3}, C_{3}\right)$
$C_{3}=\left(C_{1}^{-1}+C_{2}^{-1}\right)^{-1}, \quad \mu_{3}=C_{3}\left(C_{1}^{-1} \mu_{1}+C_{2}^{-1} \mu_{2}\right)$
$A_{3}=\mathcal{N}\left(\mu_{1} ; \mu_{2}, C_{1}+C_{2}\right)$
- We can evaluate Gaussian integrals
- Simple explicit marginalisation:
marginal distribution is again Gaussian
$\int \mathcal{N}\left(x_{1}, \ldots, x_{q}, \ldots, x_{n} ; \mu, C\right) d x_{1} \ldots d x_{q}=\mathcal{N}\left(x_{q+1}, \ldots, x_{n} ; \bar{\mu}, \bar{C}\right)$
$\bar{\mu}=\left(\mu_{q+1}, \ldots, \mu_{n}\right)$ and \bar{C} is just the $[\mathrm{q}+1, \mathrm{n}]$ submatrix of C
- Compute model probabilities, etc
- Fisher matrix formalism

Errors for Gaussians

- Errors given by covariance matrix $\mathrm{C}=\mathrm{H}^{-1}$

$$
H_{i j} \simeq-\frac{\partial^{2} \ln P(\theta \mid D)}{\partial \theta_{i} \partial \theta_{j}} \quad \Delta \chi^{2}=\sum_{i j}\left(\theta_{i}-\hat{\theta}_{i}\right) H_{i j}\left(\theta_{j}-\hat{\theta}_{j}\right)
$$

- Inverse of sub-matrix of H : conditional errors
- sub-matrix of inverse of H : marginal errors
- Constant χ^{2} boundaries: Gaussian approximation!

$\Delta \chi^{2}$ as a Function of Confidence Level and Degrees of Freedom						
	ν					
p	1	2	3	4	5	6
68.3%	1.00	2.30	3.53	4.72	5.89	7.04
90%	2.71	4.61	6.25	7.78	9.24	10.6
95.4%	4.00	6.17	8.02	9.70	11.3	12.8
99%	6.63	9.21	11.3	13.3	15.1	16.8
99.73%	9.00	11.8	14.2	16.3	18.2	20.1
99.99%	15.1	18.4	21.1	23.5	25.7	27.8

Fisher matrix formalism

- Fisher information matrix: measures information about parameters θ_{i}, defined as $\operatorname{var}($ score $)$, or

$$
F_{i j}=\left\langle H_{i j}\right\rangle=-\left\langle\frac{\partial^{2} \ln L}{\partial \theta_{i} \partial \theta_{j}}\right\rangle
$$

- Expectation is taken over data realizations for given (fixed) model and 'fiducial' parameters
- Inverse of Fisher matrix can be seen as 'lower bound' on covariance matrix (Cramer-Rao bound)
- All results for Gaussians also apply here
- Due to expectation value, we don't need actual data realizations, only the specification of the experiment

Calculating Fisher matrices

- Explicit computation... simple form for normal data:

$$
F_{i j}=\left(\partial_{\theta_{i}} \mu^{T} C^{-1} \partial_{\theta_{j}} \mu\right)+\frac{1}{2} \operatorname{tr}\left(C^{-1} \partial_{\theta_{i}} C C^{-1} \partial_{\theta_{j}} C\right)
$$

- If you have a set of observables O_{k} and know the (expected) errors σ_{k} on O_{k}, then you can do error propagation:

$$
F_{i j}=\sum_{k} \frac{\partial O_{k}}{\partial \theta_{i}} \frac{1}{\sigma_{k}^{2}} \frac{\partial O_{k}}{\partial \theta_{j}}
$$

- this generalizes in the obvious way to a covariance matrix for the O_{k}
- If you have relative errors $\delta_{k}=\sigma_{k} / O_{k}$ then

$$
F_{i j}=\sum_{k} \frac{\partial \ln O_{k}}{\partial \theta_{i}} \frac{1}{\delta_{k}^{2}} \frac{\partial \ln O_{k}}{\partial \theta_{j}}
$$

simple Fisher example

Let's revisit the simple Gaussian example:

$$
L(\mu, \sigma)=P(D \mid \mu, \sigma)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left\{-\frac{n(\mu-\bar{x})^{2}+n S^{2}}{2 \sigma^{2}}\right\}
$$

second derivatives of $\ln (\mathrm{L})$ and expectation:

$$
\begin{aligned}
& \frac{\partial^{2} \ln L}{\partial \mu^{2}}=-\frac{n}{\sigma^{2}} \rightarrow-\frac{n}{\sigma^{2}} \quad \frac{\partial^{2} \ln L}{\partial \sigma \partial \mu}=\frac{n}{\sigma^{3}}(2(\mu-\bar{x})) \rightarrow 0 \\
& \frac{\partial^{2} \ln L}{\partial \sigma^{2}}=\frac{n}{\sigma^{4}}\left(\sigma^{2}-3 S^{2}-3(\mu-\bar{x})\right) \rightarrow-2 \frac{n}{\sigma^{2}}
\end{aligned}
$$

- The Fisher matrix is diagonal \rightarrow errors independent
- error on $\mu: \sigma / \sqrt{ } n$, error on $\sigma: \sigma / \sqrt{ }(2 n)$
- no actual data realization is required
- the true posterior of σ is non-Gaussian

Markov-Chain Monte Carlo

Aim: create ensemble of parameter samples $\left\{\theta^{(i)}\right\}$ that are drawn from posterior pdf, i.e.

$$
P(\theta \mid D) \sim 1 / N \Sigma_{i} \delta\left(\theta-\theta^{(i)}\right)
$$

-> expectation values: $<g(\theta)>\sim 1 / N \Sigma_{i} g\left(\theta^{(i)}\right)$
-> marginalisation becomes projection, just drop the parameters that you want to marginalise
-> credible region: find volume enclosing x\% of points (marginalise first for less dimensions)

Most popular algorithm: Metropolis-Hastings

Metropolis-Hastings

0. init: choose random point x in parameter space
1. step: choose new point y from proposal distribution $\mathrm{q}(\mathrm{y} \mid \mathrm{x})$
2. test: accept new point with probability $\min [1, P(y) / P(x)](*)$
3. if accepted set $x=y$
4. store x (even if not changed!), go to 1 and repeat
${ }^{(*)}$ this condition assumes symmetric proposal distribution, $q(y \mid x)=q(x \mid y)$ otherwise acceptance prob. slightly more complicated, $\min [1,\{P(y) q(y \mid x)\} /\{P(x) q(x \mid y)\}]$.

- Burn-iin: initial period, should be discarded

Convergence: need to collect samples until we have a fair sample of target distribution, this can be difficult to judge (impossible in general). Diverse criteria exist.

Metropolis-Hastings II

In theory the algorithm converges independently of the choice of proposal distribution $\mathrm{q}(\mathrm{x} \mid \mathrm{y})$, in reality this tends to be the most important choice.

Usual choice is 2.3^{*} Gaussian centered on x with parameter covariance matrix ($->$ rotated ellipsoid).

Of course to do this one needs to know the answer -> re-compute covariance matrix on the fly, but in principle need to fix it for samples used in analysis.

small project

- get (simulated) data $\left[x_{i}, y_{i}, \sigma_{i}\right]$ from here: http://mpej.unige.ch/~kunz/poly_stat.dat.gz
- model: $y(x)=a_{0}+a_{1} x+a_{2} x^{2}$
- y_{i} are Gaussian around $y\left(x_{i}\right)$ with error σ_{i}
- write a little MCMC program to find parameters and correlations
- check by computing (semi-analytically) $d x^{2} / d a_{i}=0 \quad$ [easy for linear models]
- can also try model-comparison to check models $y(x)=\Sigma_{i} a_{i} x^{i}$ for different $i_{\text {max }}$

Practical model selection

The integration over (Likelihood) \times (prior) is normally hard, MCMC chains are not good enough.

- Numerical methods: thermodynamic integration, nested sampling
- Use Gaussian approximation (possibly with several Gaussians: mixture models)
- For nested models (the simpler model is same as general model with some parameters fixed) Savage-Dickey: Bayes factor is just posterior/ prior of general model at nested point, marginalised over all common parameters.

Savage-Dickey example

$P\left(p \mid n_{h}=140, n_{t}=110\right)$

Summary

- Bayes: $\mathrm{P}(\theta \mid \mathrm{D}) \sim \mathrm{P}(\mathrm{D} \mid \theta) \mathrm{P}(\theta)$
- Prior is an integral part of method (but posterior not very sensitive to it if data is any good)
- Bayesian statistics allows for (relatively) straightforward manipulation of probabilities
- Non-trivial examples tend to need MCMC or Gaussian approximations
- Model selection: P(M|D)
- Bayes factor $\mathrm{B}_{01}=\mathrm{P}\left(\mathrm{D} \mid \mathrm{M}_{0}\right) / \mathrm{P}\left(\mathrm{D} \mid \mathrm{M}_{1}\right)$ ('betting odds’)
- want $|\ln (B)|>2-3$ for strong results
- Model selection is much more sensitive to prior

