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Overview 

•  Probability distributions 
•  Bayes theorem 
•  Parameter estimation and model 

selection 
•  Practical aspects 

– Gaussians 
– Fisher matrix / error forecasts 
– MCMC 



Probability distribution(s) 
•  Space of Results Ω (e.g. coin: Ω = {é,ê}) 
•  Probability measure P: P(A)≥0, P(Ω)=1, 

P(A1+A2)=P(A1)+P(A2) for A1, A2 disjoint 
•  Random variable X : Ω -> R  (e.g. coin: X(é)=1) 
•  Probability density function (pdf): P(x) = prob(X=x) 

-> P(x)≥0, Σx P(x) = 1 
•  Cumulative distribution function (cdf):                   

F(x)=prob(X≤x)  ->  F(x)=Σu≤x P(u) 
•  Joint distribution: P(x,y)=prob(X=x AND Y=y) 
•  Marginal distribution: P(x) = prob(X=x) = Σy P(x,y) 

(and the same for y) 
•  Conditional distribution: P(x|y) = prob(X=x IF Y=y) 
•  Theorem: P(x,y) = P(x|y) P(y) = P(y|x) P(x) 
•  Expectation value: E[g(X)] = Σx g(x) P(x) 



mean, variance, etc 
•  Mean: µ=E[X]=Σx x P(x)  -> E[cX] = c E[x] 
•  Variance σ2=E[X2]-E[X]2=Σx (x-µ)2 P(x)              

-> σ2[cX] = c2 σ2[X] 
•  Covariance Cov(X,Y) = Σx,y (x-µx)(y-µy) P(x,y) 
•  Cov(X,Y) = E[XY] – µxµy  

•  X,Y independent <-> P(x,y) = P(x) P(y) 
 -> P(x|y) = P(x,y)/P(y) = P(x) 
 and Cov(X,Y) = 0 

 
•  σ2[X±Y] = σ2[X] + σ2[Y] ± Cov(X,Y) 



Normal (Gaussian) pdf  
•  Normal distribution: 

•  mean: µ, variance: σ2 

•  Z = (X-µ)/σ reduced variable, P(z) = N(0,1) 
•  Generic limiting case (central limit theorem) 

•  If X1, X2, …, Xn indep. N(0,1): χ2= Σi Xi
2 has the 

so-called chi-squared distribution with n degrees 
of freedom 

•  For χ2: mean n, variance 2n 
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•  Gaussian pdf is also ‘least informative’ (maximum 
entropy) choice if only mean and variance known 

•  In reality, often exponential decrease at high x/σ is 
too steep, ‘heavy tails’ 

•  Generalisation for vector of random variables   
X=(X1,X2,…,Xn): multivariate Gaussian 

–  given by mean vector µ and covariance matrix C (symmetric, 
positive -> eigenvalues are real & positive) 

–  if Xi independent: C=diag(σ1
2,…,σn

2) and 

more on Normal pdf 
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Statistics 
•  Typical case: Data D={(xi,yi,σi)}  [σ: error on y] 
•  Assumption: P(yi|xi,y(x),σi)= N(y(xi),σi

2) indep. 
•  In general y(x) is a function of parameters θ,                   

e.g. y(x) = a*x+b -> θ={a,b} 
 
⇒   define  
 

χ2 has chi-square distribution with ν= (# data points) -               
(# parameters) degrees of freedom 

•  best fit at            (‘maximum likelihood’, ML) 
•  can check ‘goodness of fit’ of minimal χ2 
•  Taylor expansion of at χ2 ML ->    

 -> Cov(θj,θk)=(H-1)jk 
•  P(D|θ) only normal in θ if model y(x;θ) is linear in θ! 
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Bayesian statistics 

•  In general we want to know the underlying 
parameters θ, i.e. P(θ|D), not P(D|θ) 

•  P(θ|D) has no probabilistic interpretation in a 
frequentist sense: the parameters θ are not 
random variables 

•  Bayesian interpretation: ‘limited knowledge’ 
•  Formally just application of Bayes theorem: 

•  Mathematical proofs exist that construction is at 
least self-consistent (cf eg Cox theorem) 

P (D, �) = P (D|�)P (�) = P (�|D)P (D)� P (�|D) = P (D|�) P (�)
P (D)



Bayes theorem example 

•  You have a mind-scanner that can identify a 
terrorist with 99.99% probability and gets it 
wrong in only 0.01% of cases 

•  1 in 1’000’000 is a terrorist 
•  should you shoot people who fail the mind-

scanner test? 



Bayes theorem example 

•  You have a mind-scanner that can identify a 
terrorist with 99.99% probability and gets it 
wrong in only 0.01% of cases 

•  1 in 1’000’000 is a terrorist 
•  should you shoot people who fail the mind-

scanner test? 
 
X: is a terrorist, Y: fails mind-scanner 
P(Y|X) = 0.9999 
P(X|Y) = P(Y|X)P(X)/P(Y) ~ 1*10-6*104 ~ 10-2!!! 



Parameter estimation 

•  P(D|θ) : likelihood L(θ)  -> ‘given’ by experiment 
•  P(θ|D) : posterior         -> that’s what we want 
•  P(θ) : prior                  [P(D) : left for later] 
•  Prior: necessary, measure on parameter space, 

typical choices:  
–  P(θ) constant -> ‘flat prior’, P(D|θ) ~ L(θ) 
–  P(θ) ~ 1/θ -> prior flat in log(θ) -> no scale for θ 
(there is a whole literature on how to choose priors) 

•  What to estimate? 

–  Mean & error: µθ = Σθ θ P(θ|D), C(θi,θj) [as before] 
–  Maximum: maxθ P(θ|D)  -> max. likelihood for flat prior 
–  ‘credible regions’, e.g. 95% parameter volume  



Explicit example 
Very simple example: 
•  D = {xi, i=1,…,n} drawn indep. from N(µ,σ2) 
•  Estimate µ and ln σ 
1. Priors: P(µ)=const, P(ln σ) = const 
2. Likelihood: product of P(xi|µ,σ2) over all points 

3. Posterior: P(µ, ln σ|D) ~ P(D|µ,ln σ) 
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sufficient statistics 



Explicit example II 
1.  Maximum of posterior = maximum of likelihood, 

it is at                    (compute dL/dθ=0) 
2.  Assume σ known -> want P(µ|D,σ) 

3.  Assume both µ and σ unknown, what is P(σ|D)? 
 

 Gaussian integral for P(µ)=const,                   
can be done, now maximum at  
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Explicit example III 

4.  Both µ and σ unknown (as 3), what is P(µ|D)? 

 can be solved e.g. by setting u = A/σ2 

 
 

 (normalisation e.g. from                  ) 
-> Student’s t distribution [notice heavy tails!] 
(here resulting from superposing Normal 

distributions with different widths) 
-> this is the pdf to use when variance unknown! 
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Model selection 

•  So far we always assumed model to be known. 
•  If not, then we can add overall dependence on M  

•  we want to know P(M|D) 
•  Bayes again: P(M|D) = P(D|M) P(M) / P(D) 
•  And 

•  Since  

P (�|D,M) = P (D|�,M)
P (�|M)
P (D|M)

Z
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B12
Bayes	  factor	  
(absolute	  value	  
of	  P(D|M)	  not	  so	  
instruc:ve)	  

P (D|M) =
Z

d�P (D|�,M)P (�|M) (likelihood used as f(θ) 
but normalised wrt D!) 



goodness of  fit vs model selection 
250 coin tosses: 140 heads, 110 tails  (<- D) 
Random or not?  
 
Likelihood: binomial 
 
coin unbiased: p=1/2 => P(nh≥140|p=1/2) ~ 0.033 
-> looks bad! 
 
 

P (nh, nt|p) =
(nh + nt)!

nh!nt!
pnh(1� p)nt



goodness of  fit vs model selection 
250 coin tosses: 140 heads, 110 tails  (<- D) 
Random or not?  
 
Likelihood: binomial 
 
coin unbiased: p=1/2 => P(nh≥140|p=1/2) ~ 0.033 
-> looks bad! 
 
Bayes: M0: p=1/2,  M1: p free parameter, P(p) uniform in [0,1] 
 
 
 
 
-> bad absolute goodness of fit should make you suspicious, but 

still need to find a better model! 
 

P (nh, nt|p) =
(nh + nt)!
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model selection 
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Occams	  Razor:	  
Best	  p	  is	  s:ll	  surprisingly	  
close	  to	  p=1/2,	  rela:ve	  
to	  prior	  width.	  	  

but even for M2: p=0.56 
P(D|M2)/P(D|M0) ~ 6.1 
 
(normally want B >> 10 
for a ‘strong’ result) 



Practical aspects 

Often 10+ parameters (sometimes much more!) 
Grid with 5 points on each side: 510 ~ 107 points 

-> how to deal with high-dimensional spaces? 

•  Analytical approximation: Gaussians 
•  Numerical methods: MCMC 

We would like a simple way to forecast accuracy of 
future experiments 

•  Fisher matrix formalism 
•  (or just create a fake likelihood and analyze it) 



Gaussians 
Often likelihood / posterior is also approximately 

Gaussian in parameters -> Taylor expansion: 
   

Here peak   and a bit loosely                       at peak 

This is just proportional to a Gaussian / Normal 
multivariate pdf for the parameters θ: 
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(In general a Gaussian pdf for the data [-> χ2] does not imply a Gaussian pdf for 
the parameters, only if the model y(x;θ) is linear! But: central limit theorem!) 



Gaussians 
Big advantage: 
•  Products of Gaussians are Gaussians 

 

•  We can evaluate Gaussian integrals 
–  Simple explicit marginalisation:  

  marginal distribution is again Gaussian 
   

–  Compute model probabilities, etc 
–  Fisher matrix formalism 
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Z
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µ = (µq+1, . . . , µn) Cand     is just the [q+1,n] submatrix of C 



Errors for Gaussians 
•  Errors given by covariance matrix C = H-1 

•  Inverse of sub-matrix of H: conditional errors 
•  sub-matrix of inverse of H: marginal errors 
•  Constant χ2 boundaries:                           

Gaussian approximation! 
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(numerical recipes) 



Fisher matrix formalism 
•  Fisher information matrix: measures information 

about parameters θi, defined as var(score), or 

•  Expectation is taken over data realizations for 
given (fixed) model and ‘fiducial’ parameters 

•  Inverse of Fisher matrix can be seen as ‘lower 
bound’ on covariance matrix (Cramer-Rao bound) 

•  All results for Gaussians also apply here 
•  Due to expectation value, we don’t need actual 

data realizations, only the specification of the 
experiment 
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Calculating Fisher matrices 
•  Explicit computation… simple form for normal data: 
 
 
•  If you have a set of observables Ok and know the 

(expected) errors σk on Ok, then you can do error 
propagation: 

–  this generalizes in the obvious way to a covariance matrix 
for the Ok 

–  If you have relative errors δk = σk/Ok then  
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simple Fisher example 
Let’s revisit the simple Gaussian example: 
 
 
 
second derivatives of ln(L) and expectation: 
 
 
 
 

–  The Fisher matrix is diagonal à errors independent 
–  error on µ: σ/√n, error on σ: σ/√(2n) 
–  no actual data realization is required 
–  the true posterior of σ is non-Gaussian 

=

1

(2�⇥2
)

n/2
exp

⇢
�n(µ� x̄)

2
+ nS2

2⇥2

�
L(µ,�) = P (D|µ,�)

@2 lnL

@µ2
= � n

�2
! � n

�2

@

2 lnL

@�

2
=

n

�

4

�
�

2 � 3S2 � 3(µ� x̄)
�
! �2

n

�

2

@

2 lnL

@�@µ

=
n

�

3
(2(µ� x̄)) ! 0



Markov-Chain Monte Carlo 

Aim: create ensemble of parameter samples {θ(i)} 
that are drawn from posterior pdf, i.e.  
   P(θ|D) ~ 1/N Σi δ(θ-θ(i)) 

 
-> expectation values: <g(θ)> ~ 1/N Σi g(θ(i)) 
-> marginalisation becomes projection, just drop 

the parameters that you want to marginalise 
-> credible region: find volume enclosing x% of 

points (marginalise first for less dimensions) 
 
Most popular algorithm: Metropolis-Hastings 



Metropolis-Hastings 
0. init: choose random point x in parameter space 
1. step: choose new point y from proposal distribution q(y|x) 
2. test: accept new point with probability min[1,P(y)/P(x)] (*) 
3. if accepted set x=y 
4. store x (even if not changed!), go to 1 and repeat 
 
(*) this condition assumes symmetric proposal distribution,    

q(y|x) = q(x|y) otherwise acceptance prob. slightly more 
complicated, min[1,{P(y)q(y|x)}/{P(x)q(x|y)}]. 

 
•  Burn-in: initial period, should be discarded 
•  Convergence: need to collect samples until we have a fair 

sample of target distribution, this can be difficult to judge 
(impossible in general). Diverse criteria exist. 



Metropolis-Hastings II 

In theory the algorithm converges independently of 
the choice of proposal distribution q(x|y), in 
reality this tends to be the most important choice.  

 
Usual choice is 2.3*Gaussian centered on x with 

parameter covariance matrix (-> rotated 
ellipsoid).  

 
Of course to do this one needs to know the answer   

-> re-compute covariance matrix on the fly, but in 
principle need to fix it for samples used in 
analysis. 

 
 



small project 
•  get (simulated) data [xi,yi,σi] from here: 

http://mpej.unige.ch/~kunz/poly_stat.dat.gz 

•  model: y(x)=a0+a1x+a2x2 

•  yi are Gaussian around y(xi) with error σi 

•  write a little MCMC program to find 
parameters and correlations 

•  check by computing (semi-analytically) 
dχ2/dai = 0  [easy for linear models] 

•  can also try model-comparison to check 
models y(x) = Σi ai xi for different imax 



Practical model selection 
The integration over (Likelihood)x(prior) is normally 

hard, MCMC chains are not good enough. 

•  Numerical methods: thermodynamic integration, 
nested sampling 

•  Use Gaussian approximation (possibly with 
several Gaussians: mixture models) 

•  For nested models (the simpler model is same as 
general model with some parameters fixed) 
Savage-Dickey: Bayes factor is just posterior/
prior of general model at nested point, 
marginalised over all common parameters. 



Savage-Dickey example 
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M0: p = ½ 
M1: p free 
M2: p = 140/250 
 
M0 and M2 nested in M1 
 
Savage-Dickey: 
 
 
 
->  B01 = 2.1 

 B21 = 12.7 
 B20 = B21/B01 = 6.1 

Bj1 =
P (D|Mj)
P (D|M1)

=
P (p|D)
P (p)



Summary 
•  Bayes: P(θ|D) ~ P(D|θ) P(θ) 
•  Prior is an integral part of method (but posterior 

not very sensitive to it if data is any good) 

•  Bayesian statistics allows for (relatively) 
straightforward manipulation of probabilities 

•  Non-trivial examples tend to need MCMC or 
Gaussian approximations 

•  Model selection: P(M|D) 

•  Bayes factor B01=P(D|M0)/P(D|M1) (‘betting odds’) 

•  want |ln(B)| > 2-3 for strong results 
•  Model selection is much more sensitive to prior  


