Introduction to (mostly Bayesian) statistics

Martin Kunz Université de Genève

Overview

- Probability distributions
- Bayes theorem
- Parameter estimation and model selection
- Practical aspects
 - Gaussians
 - Fisher matrix / error forecasts
 - MCMC

Probability distribution(s)

- Space of Results Ω (e.g. coin: $\Omega = \{ \uparrow, \Psi \}$)
- Probability measure P: $P(A) \ge 0$, $P(\Omega)=1$, $P(A_1+A_2)=P(A_1)+P(A_2)$ for A1, A2 disjoint
- Random variable X : $\Omega \rightarrow R$ (e.g. coin: X(\uparrow)=1)
- Probability density function (pdf): P(x) = prob(X=x)-> $P(x) \ge 0$, $\Sigma_x P(x) = 1$
- Cumulative distribution function (cdf): $F(x)=prob(X \le x) \rightarrow F(x)=\Sigma_{u \le x} P(u)$
- Joint distribution: P(x,y)=prob(X=x AND Y=y)
- Marginal distribution: P(x) = prob(X=x) = Σ_y P(x,y) (and the same for y)
- Conditional distribution: P(x|y) = prob(X=x IF Y=y)
- Theorem: P(x,y) = P(x|y) P(y) = P(y|x) P(x)
- Expectation value: $E[g(X)] = \Sigma_x g(x) P(x)$

mean, variance, etc

- Mean: $\mu = E[X] = \Sigma_x \times P(x) \rightarrow E[cX] = c E[x]$
- Variance $\sigma^2 = E[X^2] E[X]^2 = \Sigma_x (x-\mu)^2 P(x)$ -> $\sigma^2[cX] = c^2 \sigma^2[X]$
- Covariance $Cov(X,Y) = \Sigma_{x,y} (x-\mu_x)(y-\mu_y) P(x,y)$
- Cov(X,Y) = E[XY] $\mu_x \mu_y$
- X,Y independent <-> P(x,y) = P(x) P(y)
 -> P(x|y) = P(x,y)/P(y) = P(x)
 and Cov(X,Y) = 0
- $\sigma^2[X \pm Y] = \sigma^2[X] + \sigma^2[Y] \pm Cov(X,Y)$

Normal (Gaussian) pdf

• Normal distribution:

$$P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] = \mathcal{N}(\mu, \sigma^2)$$

- mean: μ , variance: σ^2
- $Z = (X-\mu)/\sigma$ reduced variable, P(z) = N(0,1)
- Generic limiting case (central limit theorem)
- If X_1 , X_2 , ..., X_n indep. N(0,1): $\chi^2 = \Sigma_i X_i^2$ has the so-called chi-squared distribution with n degrees of freedom
- For χ^2 : mean n, variance 2n

more on Normal pdf

- Gaussian pdf is also 'least informative' (maximum entropy) choice if only mean and variance known
- In reality, often exponential decrease at high x/ σ is too steep, 'heavy tails'
- Generalisation for vector of random variables
 X=(X₁,X₂,...,X_n): multivariate Gaussian

$$P(x) = \frac{1}{(2\pi|C|)^{n/2}} \exp\left[-\frac{1}{2}\sum_{i,j=1}^{n} (x_i - \mu_i)C_{ij}^{-1}(x_j - \mu_j)\right]$$

- given by mean vector µ and covariance matrix C (symmetric, positive -> eigenvalues are real & positive)
- if X_i independent: C=diag($\sigma_1^2,...,\sigma_n^2$) and

$$P(x) = \prod_{i=1}^{n} P(x_i)$$
 product of univariate pdf's

Statistics

- Typical case: Data $D = \{(x_i, y_i, \sigma_i)\}$ [σ : error on y]
- Assumption: $P(y_i|x_i,y(x),\sigma_i) = N(y(x_i),\sigma_i^2)$ indep.
- In general y(x) is a function of parameters θ, e.g. y(x) = a*x+b -> θ={a,b}

$$\Rightarrow \text{ define } \chi^2 = \sum_i \frac{[y_i - y(x_i; \theta)]^2}{\sigma_i^2} \quad \rightarrow P(D|\theta) \propto e^{-\chi^2/2}$$

 χ^2 has chi-square distribution with v= (# data points) - (# parameters) degrees of freedom

- best fit at $\frac{\partial \chi^2}{\partial \theta_j} = 0$ ('maximum likelihood', ML)
- can check 'goodness of fit' of minimal χ^2
- Taylor expansion of at $\chi^2 ML \rightarrow H_{jk} \equiv \frac{1}{2} \frac{\partial^2 \chi^2}{\partial \theta_j \theta_k}$ -> Cov $(\theta_j, \theta_k) = (H^{-1})_{jk}$
- $P(D|\theta)$ only normal in θ if model $y(x;\theta)$ is linear in θ !

Bayesian statistics

- In general we want to know the underlying parameters θ, i.e. P(θ|D), not P(D|θ)
- P(θ|D) has no probabilistic interpretation in a frequentist sense: the parameters θ are not random variables
- Bayesian interpretation: 'limited knowledge'
- Formally just application of Bayes theorem:

 $P(D,\theta) = P(D|\theta)P(\theta) = P(\theta|D)P(D) \Rightarrow \frac{P(\theta|D) = P(D|\theta)}{P(D)} \frac{P(\theta)}{P(D)}$

 Mathematical proofs exist that construction is at least self-consistent (cf eg Cox theorem)

Bayes theorem example

- You have a mind-scanner that can identify a terrorist with 99.99% probability and gets it wrong in only 0.01% of cases
- 1 in 1'000'000 is a terrorist
- should you shoot people who fail the mindscanner test?

Bayes theorem example

- You have a mind-scanner that can identify a terrorist with 99.99% probability and gets it wrong in only 0.01% of cases
- 1 in 1'000'000 is a terrorist
- should you shoot people who fail the mindscanner test?

X: is a terrorist, Y: fails mind-scanner P(Y|X) = 0.9999 $P(X|Y) = P(Y|X)P(X)/P(Y) \sim 1*10^{-6}*10^{4} \sim 10^{-2}!!!$

Parameter estimation

- $P(D|\theta)$: likelihood $L(\theta) \rightarrow$ 'given' by experiment
- $P(\theta|D)$: posterior -> that's what we want
- P(θ) : prior [P(D) : left for later]
- Prior: necessary, measure on parameter space, typical choices:
 - $P(\theta)$ constant -> 'flat prior', $P(D|\theta) \sim L(\theta)$
 - $P(\theta) \sim 1/\theta$ -> prior flat in $log(\theta)$ -> no scale for θ (there is a whole literature on how to choose priors)
- What to estimate?
 - Mean & error: $\mu_{\theta} = \Sigma_{\theta} \theta P(\theta|D), C(\theta_i, \theta_j)$ [as before]
 - Maximum: $\max_{\theta} P(\theta|D) \rightarrow \max$. likelihood for flat prior
 - 'credible regions', e.g. 95% parameter volume

Explicit example

Very simple example:

- $D = \{x_i, i=1,...,n\}$ drawn indep. from $N(\mu,\sigma^2)$
- Estimate μ and ln σ
- 1. Priors: $P(\mu)$ =const, $P(\ln \sigma)$ = const
- 2. Likelihood: product of $P(x_i|\mu,\sigma^2)$ over all points

$$P(D|\mu,\sigma) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{-\sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2}\right\} = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{-\frac{n(\mu - \bar{x})^2 + nS^2}{2\sigma^2}\right\} = \frac{$$

3. Posterior: $P(\mu, \ln \sigma | D) \sim P(D|\mu, \ln \sigma)$

Explicit example II

- 1. Maximum of posterior = maximum of likelihood, it is at $\{\mu = \bar{x}, \sigma = S\}$ (compute dL/d θ =0)
- 2. Assume σ known -> want P(μ |D, σ)

$$P(\mu|\{x_i\}_{i=1}^n, \sigma) \propto \exp\left\{-\frac{n(\mu-\bar{x})^2}{2\sigma^2}\right\}$$
$$\to P(\mu) = \mathcal{N}(\bar{x}, \sigma^2/n)$$

3. Assume both μ and σ unknown, what is $P(\sigma|D)$? $P(D|\sigma) = \int P(D,\mu|\sigma)d\mu = \int P(D|\sigma,\mu)P(\mu)d\mu$ Gaussian integral for $P(\mu)=\text{const}$, can be done, now maximum at

0.04

0.03

0.2

P(sigmalD)

1 1.2 1.4 1.61.8 2

σ

0.8

0.4

$$\sigma^2 = \frac{n}{n-1}S^2$$

Explicit example III

4. Both μ and σ unknown (as 3), what is P(μ |D)?

$$P(\mu|D) = \int P(\mu,\sigma|D)d\sigma \propto \int_0^\infty \sigma^{-(n+1)} \exp\left\{-\frac{n(\mu-\bar{x})^2 + nS^2}{2\sigma^2}\right\} d\sigma$$

can be solved e.g. by setting $u = A/\sigma^2$

$$\to P(\mu|D) \propto A^{-n/2} \propto 1/(n(\mu - \bar{x})^2 + nS^2)^{n/2}$$

(normalisation e.g. from ∫ dµP(µ|D) = 1)
-> Student's t distribution [notice heavy tails!]
(here resulting from superposing Normal
distributions with different widths)

-> this is the pdf to use when variance unknown!

Model selection

- So far we always assumed model to be known.
- If not, then we can add overall dependence on M

$$P(\theta|D, M) = P(D|\theta, M) \frac{P(\theta|M)}{P(D|M)}$$

- we want to know P(M|D)
- Bayes again: P(M|D) = P(D|M) P(M) / P(D)

 $d\theta P(D|\theta, M)P(\theta|M)$

• And $\frac{P(M_1|D)}{P(M_2|D)} = \frac{P(M_1)}{P(M_2)} \frac{P(D|M_1)}{P(D|M_2)} = \frac{P(M_1)}{P(M_2)} B_{12} \xrightarrow[\text{(absolute value of P(D|M) not so}]{B_{12}}$

• Since
$$\int P(\theta|D, M)d\theta = 1$$

P(D|M) =

(likelihood used as $f(\theta)$ but normalised wrt D!)

instructive)

goodness of fit vs model selection

250 coin tosses: 140 heads, 110 tails (<- D) Random or not?

Likelihood: binomial $P(n_h, n_t|p) = \frac{(n_h + n_t)!}{n_h!n_t!}p^{n_h}(1-p)^{n_t}$

coin unbiased: $p=1/2 => P(n_h \ge 140|p=1/2) \sim 0.033$ -> looks bad!

goodness of fit vs model selection

250 coin tosses: 140 heads, 110 tails (<- D) Random or not?

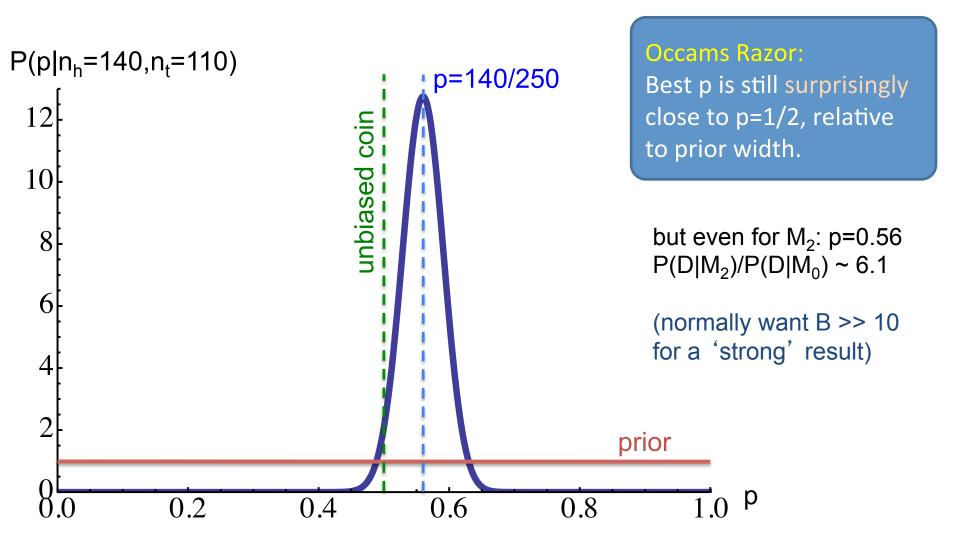
Likelihood: binomial $P(n_h, n_t|p) = \frac{(n_h + n_t)!}{n_h!n_t!}p^{n_h}(1-p)^{n_t}$

coin unbiased: $p=1/2 => P(n_h \ge 140|p=1/2) \sim 0.033$ -> looks bad!

Bayes: M₀: p=1/2, M₁: p free parameter, P(p) uniform in [0,1] $P(D|M_0) \propto 1/2^{n_h+n_t}$ $P(D|M_1) \propto \int_0^1 dp p^{n_h} (1-p)^{n_t} = \frac{n_h! n_t!}{(n_h+n_t+1)!} \int \frac{P(D|M_1)}{P(D|M_0)} \approx 0.48$

-> bad absolute goodness of fit should make you suspicious, but still need to find a better model!

model selection



Practical aspects

Often 10+ parameters (sometimes much more!) Grid with 5 points on each side: $5^{10} \sim 10^7$ points

- -> how to deal with high-dimensional spaces?
- Analytical approximation: Gaussians
- Numerical methods: MCMC

We would like a simple way to forecast accuracy of future experiments

- Fisher matrix formalism
- (or just create a fake likelihood and analyze it)

Gaussians

Often likelihood / posterior is also approximately Gaussian in parameters -> Taylor expansion:

$$\ln L(\theta) = \ln L(\hat{\theta}) + \frac{1}{2} \sum_{ij} (\theta_i - \hat{\theta}_i) \frac{\partial^2 \ln L}{\partial \theta_i \partial \theta_j} (\theta_j - \hat{\theta}_j) + \dots$$

Here peak $\hat{\theta}$ and a bit loosely $C_{ij}^{-1} = -\frac{\partial^2 \ln L}{\partial \theta_i \partial \theta_j}$ at peak

This is just proportional to a Gaussian / Normal multivariate pdf for the parameters θ :

$$P(\theta|C,\mu) = \frac{1}{\sqrt{(2\pi)^n |C|}} \exp\left\{-\frac{1}{2}(\theta-\mu)^T C^{-1}(\theta-\mu)\right\}$$

(In general a Gaussian pdf for the data [-> χ^2] does not imply a Gaussian pdf for the parameters, only if the model y(x; θ) is linear! But: central limit theorem!)

Gaussians

Big advantage:

- Products of Gaussians are Gaussians $\mathcal{N}(x;\mu_1,C_1)\mathcal{N}(x;\mu_2,C_2) = A_3\mathcal{N}(x;\mu_3,C_3)$ $C_3 = (C_1^{-1} + C_2^{-1})^{-1}, \quad \mu_3 = C_3(C_1^{-1}\mu_1 + C_2^{-1}\mu_2)$ $A_3 = \mathcal{N}(\mu_1;\mu_2,C_1 + C_2)$
- We can evaluate Gaussian integrals
 - Simple explicit marginalisation: marginal distribution is again Gaussian $\int \mathcal{N}(x_1, \dots, x_q, \dots, x_n; \mu, C) dx_1 \dots dx_q = \mathcal{N}(x_{q+1}, \dots, x_n; \overline{\mu}, \overline{C})$ $\overline{\mu} = (\mu_{q+1}, \dots, \mu_n)$ and \overline{C} is just the [q+1,n] submatrix of C
 - Compute model probabilities, etc
 - Fisher matrix formalism

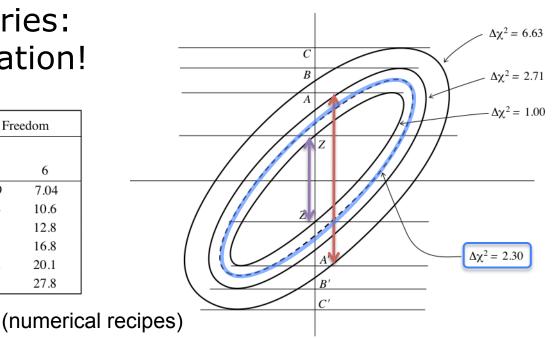
Errors for Gaussians

• Errors given by covariance matrix $C = H^{-1}$

$$H_{ij} \simeq -\frac{\partial^2 \ln P(\theta|D)}{\partial \theta_i \partial \theta_j} \qquad \Delta \chi^2 = \sum_{ij} (\theta_i - \hat{\theta}_i) H_{ij} (\theta_j - \hat{\theta}_j)$$

- Inverse of sub-matrix of H: conditional errors
- sub-matrix of inverse of H: marginal errors
- Constant χ^2 boundaries: Gaussian approximation!

$\Delta\chi^2$ as a Function of Confidence Level and Degrees of Freedom						
	ν					
<i>p</i>	1	2	3	4	5	6
68.3%	1.00	2.30	3.53	4.72	5.89	7.04
90%	2.71	4.61	6.25	7.78	9.24	10.6
95.4%	4.00	6.17	8.02	9.70	11.3	12.8
99%	6.63	9.21	11.3	13.3	15.1	16.8
99.73%	9.00	11.8	14.2	16.3	18.2	20.1
99.99%	15.1	18.4	21.1	23.5	25.7	27.8



Fisher matrix formalism

• Fisher information matrix: measures information about parameters θ_i , defined as var(score), or

$$F_{ij} = \langle H_{ij} \rangle = -\left\langle \frac{\partial^2 \ln L}{\partial \theta_i \partial \theta_j} \right\rangle$$

- Expectation is taken over data realizations for given (fixed) model and 'fiducial' parameters
- Inverse of Fisher matrix can be seen as 'lower bound' on covariance matrix (Cramer-Rao bound)
- All results for Gaussians also apply here
- Due to expectation value, we don't need actual data realizations, only the specification of the experiment

Calculating Fisher matrices

• Explicit computation... simple form for normal data:

$$F_{ij} = \left(\partial_{\theta_i} \mu^T C^{-1} \partial_{\theta_j} \mu\right) + \frac{1}{2} \operatorname{tr} \left(C^{-1} \partial_{\theta_i} C C^{-1} \partial_{\theta_j} C\right)$$

• If you have a set of observables O_k and know the (expected) errors σ_k on O_k , then you can do error propagation: $\nabla = \partial O_k + 1 \partial O_k$

$$F_{ij} = \sum_{k} \frac{\partial \mathcal{O}_{k}}{\partial \theta_{i}} \frac{1}{\sigma_{k}^{2}} \frac{\partial \mathcal{O}_{k}}{\partial \theta_{j}}$$

- this generalizes in the obvious way to a covariance matrix for the O_k
- If you have relative errors $\delta_k = \sigma_k / O_k$ then

$$F_{ij} = \sum_{k} \frac{\partial \ln O_k}{\partial \theta_i} \frac{1}{\delta_k^2} \frac{\partial \ln O_k}{\partial \theta_j}$$

simple Fisher example

Let's revisit the simple Gaussian example:

$$L(\mu,\sigma) = P(D|\mu,\sigma) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{-\frac{n(\mu-\bar{x})^2 + nS^2}{2\sigma^2}\right\}$$

second derivatives of ln(L) and expectation:

$$\frac{\partial^2 \ln L}{\partial \mu^2} = -\frac{n}{\sigma^2} \to -\frac{n}{\sigma^2} \qquad \qquad \frac{\partial^2 \ln L}{\partial \sigma \partial \mu} = \frac{n}{\sigma^3} \left(2(\mu - \bar{x}) \right) \to 0$$
$$\frac{\partial^2 \ln L}{\partial \sigma^2} = \frac{n}{\sigma^4} \left(\sigma^2 - 3S^2 - 3(\mu - \bar{x}) \right) \to -2\frac{n}{\sigma^2}$$

- The Fisher matrix is diagonal \rightarrow errors independent
- error on μ : σ/\sqrt{n} , error on σ : $\sigma/\sqrt{(2n)}$
- no actual data realization is required
- the true posterior of $\boldsymbol{\sigma}$ is non-Gaussian

Markov-Chain Monte Carlo

Aim: create ensemble of parameter samples $\{\theta^{(i)}\}\$ that are drawn from posterior pdf, i.e.

 $P(\theta|D) \sim 1/N \Sigma_i \delta(\theta - \theta^{(i)})$

-> expectation values: $\langle g(\theta) \rangle \sim 1/N \Sigma_i g(\theta^{(i)})$

- -> marginalisation becomes projection, just drop the parameters that you want to marginalise
- -> credible region: find volume enclosing x% of points (marginalise first for less dimensions)

Most popular algorithm: Metropolis-Hastings

Metropolis-Hastings

- 0. init: choose random point x in parameter space
- 1. step: choose new point y from proposal distribution q(y|x)
- 2. test: accept new point with probability min[1,P(y)/P(x)] (*)
- 3. if accepted set x=y
- 4. store x (even if not changed!), go to 1 and repeat
- (*) this condition assumes symmetric proposal distribution, q(y|x) = q(x|y) otherwise acceptance prob. slightly more complicated, min[1,{P(y)q(y|x)}/{P(x)q(x|y)}].
- **Burn-in:** initial period, should be discarded
- Convergence: need to collect samples until we have a fair sample of target distribution, this can be difficult to judge (impossible in general). Diverse criteria exist.

Metropolis-Hastings II

In theory the algorithm converges independently of the choice of proposal distribution q(x|y), in reality this tends to be the most important choice.

Usual choice is 2.3*Gaussian centered on x with parameter covariance matrix (-> rotated ellipsoid).

Of course to do this one needs to know the answer -> re-compute covariance matrix on the fly, but in principle need to fix it for samples used in analysis.

small project

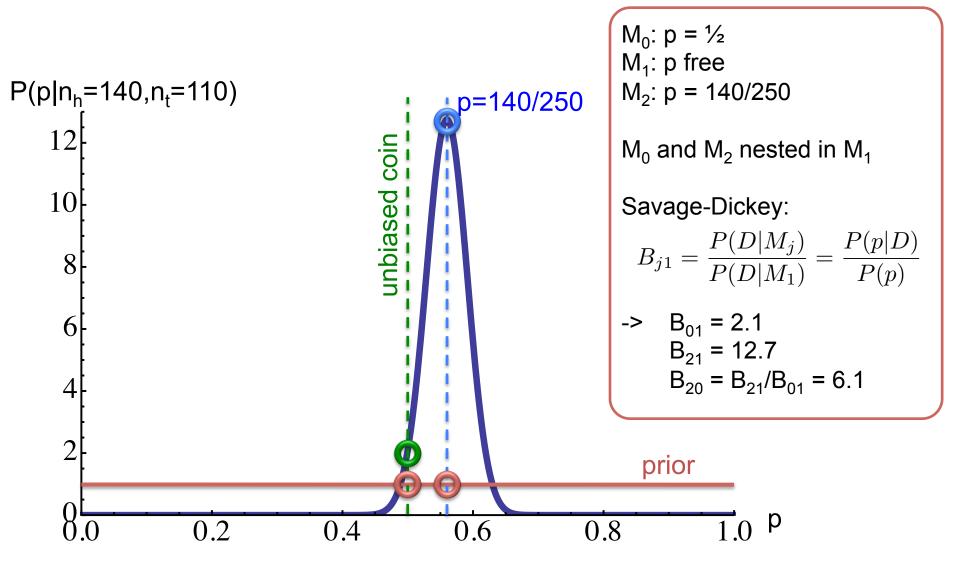
- get (simulated) data [x_i,y_i,σ_i] from here: <u>http://mpej.unige.ch/~kunz/poly_stat.dat.gz</u>
- model: $y(x) = a_0 + a_1 x + a_2 x^2$
- y_i are Gaussian around $y(x_i)$ with error σ_i
- write a little MCMC program to find parameters and correlations
- check by computing (semi-analytically) $d\chi^2/da_i = 0$ [easy for linear models]
- can also try model-comparison to check models $y(x) = \Sigma_i a_i x^i$ for different i_{max}

Practical model selection

The integration over (Likelihood)x(prior) is normally hard, MCMC chains are not good enough.

- Numerical methods: thermodynamic integration, nested sampling
- Use Gaussian approximation (possibly with several Gaussians: mixture models)
- For nested models (the simpler model is same as general model with some parameters fixed)
 Savage-Dickey: Bayes factor is just posterior/ prior of general model at nested point, marginalised over all common parameters.

Savage-Dickey example



Summary

- Bayes: $P(\theta|D) \sim P(D|\theta) P(\theta)$
- Prior is an integral part of method (but posterior not very sensitive to it if data is any good)
- Bayesian statistics allows for (relatively) straightforward manipulation of probabilities
- Non-trivial examples tend to need MCMC or Gaussian approximations
- Model selection: P(M|D)
- Bayes factor $B_{01} = P(D|M_0)/P(D|M_1)$ ('betting odds')
- want |ln(B)| > 2-3 for strong results
- Model selection is much more sensitive to prior