A brief thermal history of the Universe

Martin Kunz
Université de Genève

Overview

- Equilibrium description
- Distribution functions
- Neutrino decoupling and the neutrino background
- Photon decoupling, recombination and the CMB
- BBN and light element abundances
- Comparison to observations
- Basics of Boltzmann equation
- hot and cold relics
- Summary

Brief history of the Universe

Equilibrium distributions

Short-range interactions maintaining thermodynamic equilibrium:

$$
f(k, t) d^{3} k=\frac{g}{(2 \pi)^{3}}(\exp [(E-\mu) / T] \pm 1)^{-1} d^{3} k
$$

$E=\sqrt{k^{2}+m^{2}}$, T temperature, μ chem. pot.
$n=\int f(k) d^{3} k \quad \quad$ number density
$\rho=\int E(k) f(k) d^{3} k \quad$ energy density
$p=\int \frac{|k|^{2}}{3 E(k)} f(k) d^{3} k \quad$ pressure

Relativistic species, $m \ll T$

Crank handle, using $m=\mu=0->E \sim k$ (use $x=E / T$ as integration variable)
$n_{B}=T^{3} \frac{g \zeta(3)}{\pi^{2}} \quad n_{F}=\frac{3}{4} n_{B}$
$\rho_{B}=T^{4} \frac{g}{30} \pi^{2} \quad \rho_{F}=\frac{7}{8} \rho_{B}$
with $\rho_{\mathrm{y}} \sim \mathrm{a}^{-4}=>\mathrm{T}_{\mathrm{y}} \sim 1 / a$ -> expanding universe
-> Stefan-Boltzmann law cools down
$p=\frac{\rho}{3} \quad->\mathrm{w}_{\mathrm{rad}}=\mathrm{p}_{\mathrm{rad}} / \mathrm{p}_{\mathrm{rad}}=1 / 3$

Expand $E=\sqrt{k^{2}+m^{2}}=m \sqrt{1+k^{2} / m^{2}} \approx m+k^{2} /(2 m)$ and neglect $+/-1$ wrt $\exp (\mathrm{m} / \mathrm{T})$
$n=g\left(\frac{m T}{2 \pi}\right)^{3 / 2} e^{-(m-\mu) / T}$
$\rho=m n+\frac{3}{2} n T \quad \rightarrow \mathrm{E}_{\text {kin }} /$ particle: $\quad E_{\text {kin }}=\frac{3}{2} k_{B} T$
$p=n T \ll \rho$
Massive particles are suppressed by Boltzmann factor $\exp (-m / T)$, so they will quickly drop out of thermal equilibrium when T < m -> 'freeze out' -> effective μ

Multiple relativistic species

If we have several species at different temperatures:
$\rho_{R}=\frac{T_{\gamma}^{4}}{30} \pi^{2} g_{*}$

$$
g_{*}=\sum_{i \in B} g_{i}\left(\frac{T_{i}}{T_{\gamma}}\right)^{4}+\frac{7}{8} \sum_{j \in F} g_{j}\left(\frac{T_{j}}{T_{\gamma}}\right)^{4}
$$

Entropy density: $s=\frac{\rho+p}{T} \propto T^{3}$
$\rightarrow d\left(s a^{3}\right) / d t=0$
(use f and $\dot{\rho}+3 H(\rho+p)=0$)
$s=\frac{2 \pi^{2}}{45} g_{* S} T_{\gamma}^{3}$

$$
g_{* S}=\sum_{i \in B} g_{i}\left(\frac{T_{i}}{T_{\gamma}}\right)^{3}+\frac{7}{8} \sum_{j \in F} g_{j}\left(\frac{T_{j}}{T_{\gamma}}\right)^{3}
$$

- $T_{\gamma} \propto g_{* S}^{-1 / 3} a^{-1}$

Now we are ready to study particle evolution in the early universe!

Neutrino decoupling

Interaction rate: $\Gamma]$ species in equil.: $\Gamma \gg \mathrm{H}$
Expansion rate: $\mathrm{H} \int$ species decoupled: $\Gamma \ll \mathrm{H}$
$\Gamma(T)=n(T)\langle\sigma v\rangle_{T} \quad \sigma_{F} \simeq G_{F}^{2} E^{2} \simeq G_{F}^{2} T^{2} \quad \Gamma_{F} \sim G_{F}^{2} T^{5}$
$H(T)=\sqrt{\frac{8 \pi G}{3}} \sqrt{\rho_{R}} \simeq \frac{5.44}{m_{P}} T^{2} \quad g_{*}=2+\frac{7}{8}(3 \times 2+2 \times 2)$
$\Rightarrow \frac{\Gamma_{F}}{H(T)} \simeq 0.24 T^{3} G_{F}^{2} m_{P} \simeq\left(\frac{T}{1 \mathrm{MeV}}\right)^{3}$
Neutrinos decouple when temperature drops below $\sim 1 \mathrm{MeV}$ because their interactions become too weak.

Temperature of v background

Shortly after the neutrinos decouple, we reach $\mathrm{T}=0.5 \mathrm{MeV}=\mathrm{m}_{\mathrm{e}}$ and the entropy in electron-positron pairs is transferred to photons but not to the neutrinos. Photon + electron entropy $\mathrm{g}_{*_{\mathrm{S}}}(\mathrm{Ta})^{3}$ is separately conserved:

$$
g_{*}\left(T_{\nu \mathrm{dec}}>T>m_{e}\right)=2+\frac{7}{8} \times 4=\frac{11}{2}, \quad g_{*}\left(T<m_{e}\right)=2
$$

How much are the photons heated by the electronpositron annihilation?

Temperature of v background

Shortly after the neutrinos decouple, we reach $\mathrm{T}=0.5 \mathrm{MeV}=\mathrm{m}_{\mathrm{e}}$ and the entropy in electron-positron pairs is transferred to photons but not to the neutrinos. Photon + electron entropy $\mathrm{g}_{*_{\mathrm{S}}}(\mathrm{Ta})^{3}$ is separately conserved:

$$
\begin{aligned}
& g_{*}\left(T_{\nu \mathrm{dec}}>T>m_{e}\right)=2+\frac{7}{8} \times 4=\frac{11}{2}, \quad g_{*}\left(T<m_{e}\right)=2 \\
& \frac{\left(a T_{\gamma}\right)_{\text {after }}^{3}}{\left(a T_{\gamma}\right)_{\text {before }}^{3}}=\frac{\left(g_{*}\right)_{\text {before }}}{\left(g_{*}\right)_{\text {after }}}=\frac{11}{4}
\end{aligned}
$$

Since $\left(a T_{v}\right)=\left(a T_{V}\right)_{\text {before }}$ we now have $T_{V}=(11 / 4)^{1 / 3} T_{v}$
$->$ for $T<0.5 m_{e}: g_{*} \sim 3.36$ and $g_{* S} \sim 3.91$ for radiation $(\gamma+v)$

Photon decoupling

$\mathrm{e}^{+} / \mathrm{e}^{-}$annihilation stopped by baryon asymmetry, remaining electrons and photons stay in thermal contact (Compton scattering) until electrons and protons form neutral hydrogen (recombination). As number of free electrons n_{e} drops, photons decouple when $\Gamma_{Y} \sim H$.
$\Gamma_{\gamma}=n_{e} \sigma_{T}, \quad \sigma_{T}=\frac{8 \pi \alpha_{\mathrm{EM}}^{2}}{3 m_{e}^{2}}$
$n_{j}=g_{j}\left(\frac{m_{j} T}{2 \pi}\right)^{3 / 2} e^{\left(\mu_{j}-m_{j}\right) / T}, \quad j=e, p, H \quad g_{p}=g_{e}=2, g_{H}=4$
$\mu_{p}+\mu_{e}=\mu_{H} \quad$ due to interactions (number conservation)
-> use this to remove μ 's
$m_{p}+m_{e}=m_{H}+B \quad$ energy conservation, binding energy: $\mathrm{B}=13.6 \mathrm{eV}$
Baryon number density: $\quad n_{B}=n_{p}+n_{H}=n_{e}+n_{H} \quad\left(n_{p}=n_{e}\right)$

Photon decoupling II

We can write $\frac{n_{H}}{n_{e} n_{p}} \approx \frac{g_{H}}{g_{p} g_{e}}\left(\frac{m_{e} T}{2 \pi}\right)^{-3 / 2} e^{B / T}$
introduce $X_{e}=n_{e} / n_{B}$ (fractional ionisation) and notice that (in equilibrium)
$\frac{1-X_{e}}{X_{e}^{2}}=\frac{n_{H} n_{B}}{n_{e} n_{p}}=\frac{4 \sqrt{2} \zeta(3)}{\sqrt{\pi}} \frac{n_{B}}{n_{\gamma}}{ }^{\eta}\left(\frac{T}{m_{e}}\right)^{3 / 2} e^{B / T} \quad$ Saha eqn.
Assume recombination $\sim X_{e}=0.1$ and with $\eta \sim 10^{-10}$ [why?]
$=>\mathrm{T}_{\text {rec }} \sim 0.31 \mathrm{eV}, \mathrm{z}_{\text {rec }} \sim 1300$ (why $\mathrm{T}_{\text {rec }} \ll B$?)
Go back to Γ_{y} and compare to matter dominated expansion $\mathrm{H}=\mathrm{H}_{0} \Omega_{\mathrm{m}}(1+z)^{3 / 2}$ $\Rightarrow T_{\text {dec }} \sim 0.26 \mathrm{eV}, \mathrm{z}_{\text {dec }} \sim 1100$-> origin of CMB!

Notice that recombination and photon decoupling are two different processes, although they happen at nearly the same time.

Photons decouple because n_{e} drops due to recombination (else $z_{\text {dec }} \sim 40$!).

‘equilibrium' BBN

- $\mathrm{T}>1 \mathrm{MeV}$: p and n in equilibrium through weak interactions
- T ~ 1 MeV: weak interactions too slow, v freeze-out
- Light element binding energies: a few MeV
-> when is it favourable to create the light elements?
same game as before: for species with mass number $A=\# n$ $+\# p$ and charge $Z=\# p$, assumed in equilibrium with $p \& n$
$n_{A}=g_{A}\left(\frac{m_{A} T}{2 \pi}\right)^{3 / 2} e^{\left(\mu_{A}-m_{A}\right) / T}=g_{A} \frac{A^{3 / 2}}{2^{A}}\left(\frac{m_{N} T}{2 \pi}\right)^{3(1-A) / 2} n_{p}^{Z} n_{n}^{A-Z} e^{B_{A} / T}$
where we used again $\mu_{A}=Z \mu_{p}+(A-Z) \mu_{n}$. With $X_{A}=n_{A} A / n_{N}$ mass fraction:

$$
X_{A}=\ldots=(\text { const })\left(\frac{T}{m_{N}}\right)^{3(A-1) / 2} X_{p}^{Z} X_{n}^{A-Z} \eta^{A-1} e^{B_{A} / T}
$$

BBN II: NSE

-> System of equations for 'nuclear statistical equilibrium' :
$1=X_{n}+X_{p}+X_{2}+X_{3}+\ldots$
$X_{n} / X_{p}=e^{-Q / T}$
$X_{2}=C\left(\frac{T}{m_{N}}\right)^{3 / 2} X_{p} X_{n} \eta e^{B_{2} / T}$
$X_{3}=\ldots$
etc ...

- $\mathrm{Q}=1.293 \mathrm{MeV}$
- $\mathrm{B}\left[{ }^{2} \mathrm{H}\right]=2.22 \mathrm{MeV}$
- $\mathrm{B}\left[{ }^{3} \mathrm{H}\right]=6.92 \mathrm{MeV}$
- $\mathrm{B}\left[{ }^{3} \mathrm{He}\right]=7.72 \mathrm{MeV}$
- $\mathrm{B}\left[{ }^{4} \mathrm{He}\right]=28.3 \mathrm{MeV}$

BBN III: actual BBN

In reality the reactions drop out of equilibrium eventually, and one needs to use the Boltzmann equation. Results:

- $T \sim 10 \mathrm{MeV}+$: equilibrium, $\mathrm{X}_{\mathrm{n}}=\mathrm{X}_{\mathrm{p}}=1 / 2$, rest $\mathrm{X} \ll 1$
- $\mathrm{T} \sim 1 \mathrm{MeV}: \mathrm{n}<->\mathrm{p}$ freeze-out, $\mathrm{X}_{\mathrm{n}} \sim 0.15, \mathrm{X}_{\mathrm{p}} \sim 0.85$, NSE okay for rest (with $\mathrm{X} \ll 1$)
- T ~ 0.1 MeV : neutrons decay, $\mathrm{n} / \mathrm{p} \sim 1 / 8$, NSE breaks down because ${ }^{4} \mathrm{He}$ needs Deuterium $\left({ }^{2} \mathrm{H}\right)$ which is delayed until 0.07 MeV because of high η and low B_{2}.
- T ~ 65 keV : now synthesis of ${ }^{4} \mathrm{He}$ can proceed, gets nearly all neutrons that are left:

$$
X_{{ }^{4} \mathrm{He}}=\frac{4 n_{4}}{n_{N}}=4 \frac{n_{n} / 2}{n_{n}+n_{p}}=2 \frac{n_{n} / n_{p}}{1+n_{n} / n_{p}}=2 \frac{1 / 8}{1+1 / 8} \approx 0.22
$$

Rest is hydrogen, with some traces of ${ }^{2} \mathrm{H},{ }^{3} \mathrm{He},{ }^{7} \mathrm{Li}$ and ${ }^{7} \mathrm{Be}$.

Binding Energy per Nucleon

(figures from A. Weiss, Einstein Online Vol. 2 (2006), 1018)

Cosmic time (in seconds)

Timeline summary

Energy (γ)	time	event
1 MeV	7 s	neutrino freeze-out
0.5 MeV	10 s	$\mathrm{e}^{+} / \mathrm{e}^{-}$annihilation, $\mathrm{T}_{\gamma} \sim 1.4 \mathrm{~T}_{v}$
70 keV	3 minutes	BBN, light elements formed
0.77 eV	$70^{\prime} 000 \mathrm{yr}$	onset of matter domination
0.31 eV	$300^{\prime} 000 \mathrm{yr}$	recombination
0.26 eV	$380^{\prime} 000 \mathrm{yr}$	photon decoupling, origin of CMB
0.2 meV	14 Gyr	today

$$
\frac{1 \mathrm{eV}}{k_{\mathrm{B}}}=\frac{1.60217653(14) \times 10^{-19} \mathrm{~J}}{1.3806505(24) \times 10^{-23} \mathrm{~J} / \mathrm{K}}=11604.505(20) \mathrm{K} .
$$

Comparison to observations

3 classical 'pillars' of big-bang model:

1. Hubble law -> Monday
2. Cosmic Microwave Background

Nobel prizes:
1978 CMB discovery 2006 CMB properties 2011 accelerated exp.
3. BBN and element abundances

CMB: we expect an isotropic radiation with thermal spectrum to fill the universe

Comparison II : BBN

BBN tests:

- baryon/photon ratio η
- effective \# of relativistic degrees of freedom
- consistency of different abundances

The CMB anisotropies (Valeria) also depend on the baryon abundance (even-odd peak heights). Results are consistent with BBN! $\Omega_{\mathrm{b}} \approx 0.05$
(what is all the rest??!!)

Fraction of critical density

Non-equilibrium treatment

Looking at equilibrium quantities is very useful, but:

- when / how does freeze-out really happen?
- what to do when NSE breaks down
-> Treatment with Boltzmann equation

$$
L[f]=C[f] / 2
$$

L: Liouville operator ~ d/dt
C: collision operator (\rightarrow particle physics!)
relativistic / covariant form: $L=p^{\alpha} \frac{\partial}{\partial x^{\alpha}}-\Gamma_{\beta \gamma}^{\alpha} p^{\beta} p^{\gamma} \frac{\partial}{\partial p^{\alpha}}$
$f=f(E, t)->$ only $\alpha=0$ relevant, $p^{0}=E$ and Γ from FRW metric
$=>[f]=\left[E \frac{\partial}{\partial t}-\frac{\dot{a}}{a} \bar{p}^{2} \frac{\partial}{\partial E}\right] f(E, t)$

Liouville operator

$L[f]=\left[E \frac{\partial}{\partial t}-\frac{\dot{a}}{a} \bar{p}^{2} \frac{\partial}{\partial E}\right] f(E, t)$
We only want to know the abundance -> integrate L[f]/E over 3 -momentum p to get n :

- first term is just dn/dt
- second term: rewrite in terms of p and integrate by parts (d/dE = E/p d/dp)

$$
\frac{g}{2 \pi^{2}} \int d p p^{2} \frac{L[f]}{E}=\dot{n}+3 H n
$$

1. no collisions: $L[f]=0->n \sim a^{-3}$ as expected!
2. deviations from full equilibrium will be encoded in μ

Collision operator

Roughly: (\# of particles 'in') - (\# of particles 'out') of phase space volume $d^{3} p$ $d^{3} x$
For (reversible) scattering of type $1+2<->3+4$ and with $d \Pi_{i} \equiv \frac{g_{i}}{(2 \pi)^{3}} \frac{d^{3} p_{i}}{2 E_{i}}$

$$
\begin{aligned}
& \frac{g_{1}}{(2 \pi)^{3}} \int d^{3} p_{1} \frac{C_{1}[f]}{2 E_{1}}=\int d \Pi_{1} d \Pi_{2} d \Pi_{3} d \Pi_{4}(2 \pi)^{4} \delta^{(4)}\left(p_{1}+p_{2}-p_{3}-p_{4}\right)|\mathcal{M}|^{2} \\
& {\left[f_{3} f_{4}\left(1 \pm f_{1}\right)\left(1 \pm f_{2}\right)-f_{1} f_{2}\left(1 \pm f_{3}\right)\left(1 \pm f_{4}\right)\right] }
\end{aligned}
$$

kinetic equilibrium \&

$$
\begin{aligned}
& f(E) \approx e^{(\mu-E) / T} \\
& {[\ldots] \rightarrow e^{-\left(E_{1}+E_{2}\right) / T}\left[e^{\left(\mu_{1}+\mu_{2}\right) / T}-e^{\left(\mu_{3}+\mu_{4}\right) / T}\right]}
\end{aligned}
$$

with $n_{i}=e^{\mu_{i} / T} n_{i}^{(e q)}, \quad n_{i}^{(e q)}=\frac{g_{i}}{(2 \pi)^{3}} \int d^{3} p e^{-E_{i} / T} \quad$ and
$\langle\sigma v\rangle \equiv \frac{1}{n_{1}^{(e q)} n_{2}^{(e q)}} \int d \Pi_{1} d \Pi_{2} d \Pi_{3} d \Pi_{4} e^{-\left(E_{1}+E_{2}\right) / T}(2 \pi)^{4} \delta^{(4)}\left(p_{1}+p_{2}-p_{3}-p_{4}\right)|\mathcal{M}|^{2}$

$$
\Rightarrow \dot{n}_{1}+3 H n_{1}=n_{1}^{(e q)} n_{2}^{(e q)}\langle\sigma v\rangle\left(\frac{n_{3} n_{4}}{n_{3}^{(e q)} n_{4}^{(e q)}}-\frac{n_{1} n_{2}}{n_{1}^{(e q)} n_{2}^{(e q)}}\right)
$$

Annihilation and freeze-out

Consider annihilation processes: $\quad A+\bar{A} \leftrightarrow Y+\bar{Y}$ assume Y in thermal equilibrium

$$
\dot{n}_{A}+3 H n_{A}=\langle\sigma v\rangle\left(\left(n_{A}^{(e q)}\right)^{2}-n_{A}^{2}\right)
$$

1) <ov> large -> n -> $n^{(e q)}$
2) <ovv> small $->n \sim a^{-3}$

Introduce $\mathrm{x}=\mathrm{m} / \mathrm{T}$ and $\mathrm{Y}=\mathrm{n} / \mathrm{T}^{3}$ ($\mathrm{Y} \sim \mathrm{n} / \mathrm{s}$, constant for passive evol.) some algebra...

$$
\frac{x}{Y_{A}^{(e q)}} Y_{A}^{\prime}=-\frac{\Gamma_{A}}{H(x)}\left[\left(\frac{Y_{A}}{Y_{A}^{(e q)}}\right)^{2}-1\right]
$$

$=>$ freeze-out governed by $\Gamma / \mathrm{H} \quad\left(\Gamma=\mathrm{n}^{(\mathrm{eq})}<\sigma \mathrm{V}>\right)$
(with $Y^{(e q)}=0.09 \mathrm{~g}$ (for fermions) if $\mathrm{x} \ll 1$ and $\mathrm{Y}^{(e q)}=0.16 \mathrm{~g} \mathrm{x}^{3 / 2} \mathrm{e}^{-\mathrm{x}}$ if $\mathrm{x} \gg 1$)

Hot and cold relics

Hot relics: freeze-out when still relativistic ($\mathrm{x}_{\mathrm{f}}<1$)
$->Y_{A}(x \rightarrow \infty)=Y_{A}^{(e q)}\left(x_{f}\right)=0.278 g_{A} / g_{* S}\left(x_{f}\right)$

Cold relics: freeze out when $x_{f} \gg 1=>Y_{A}$ suppressed by $e^{-m / T}$ Abundance generically proportional to $1 / \sigma$

We can compute
$\rho_{\mathrm{A}, 0}=\mathrm{m}_{\mathrm{A}} \mathrm{n}_{\mathrm{A}, 0}$
$\Omega_{\mathrm{A}}=\rho_{\mathrm{A}, 0} / \rho_{\text {crit }}$
numerically, weak crosssections lead to $\Omega \sim 1$
-> WIMP miracle

Abundance estimate

- Assume $\lambda=\frac{m^{3}\langle\sigma v\rangle}{H(m)}$ roughly constant -> $\quad \frac{d Y}{d x}=-\frac{\lambda}{x^{2}}\left(Y^{2}-Y^{(e q) 2}\right)$
- $\mathrm{Y}(\mathrm{eq}) \ll \mathrm{Y}$ from freeze-out onwards -> $\quad d Y / d x \simeq-\lambda Y^{2} / x^{2}$
- Integrate from freeze-out to late times -> $1 / Y_{\infty}-1 / Y_{f}=\lambda / x_{f}$
- Usually $\mathrm{Y}_{\infty} \ll \mathrm{Y}_{\mathrm{f}}->\quad Y_{\infty} \approx x_{f} / \lambda$
- This depends only linearly on x_{f}, so take e.g. $\mathrm{x}_{\mathrm{f}}=10$
- particle density scales like a^{3} after freeze out
$\Rightarrow \rho=m n_{0}=m n_{1}\left(\frac{a_{1}}{a_{0}}\right)^{3}=m Y_{\infty} T_{0}^{3}\left(\frac{a_{1} T_{1}}{a_{0} T_{0}}\right)^{3} \simeq \frac{m Y_{\infty} T_{0}^{3}}{30}$
(extra factor ~ 30 from entropy generation in later annihilation processes)
\Rightarrow insert $\mathrm{Y}_{\infty} \ldots$ final: $\Omega_{X} \sim\left(\frac{x_{f}}{10}\right)\left(\frac{g_{*}(m)}{100}\right)^{1 / 2} \frac{10^{-39} \mathrm{~cm}^{2}}{\langle\sigma v\rangle}$

reasons for decoupling / freeze-out

- neutrinos decouple from thermal equilibrium because interactions become too weak ($\sim \mathrm{T}^{5}$ scaling of interaction rate)
- photons (CMB) decouple from equilibrium because e- disappear (recombination)
- baryons freeze-out from annihilation because of baryon-antibaryon asymmetry (no more antibaryons to annihilate with)
- WIMP's (dark matter) freeze out from because their density drops due to $e^{-m / T}$ Boltzmann factor (if they are WIMP's)

Summary

- Methods
- distribution function $f(t, x, v)$
- conservation of entropy
- full / kinetic equilibrium
- Boltzmann equation (evolution of f)
- Results
- evolution of particle number, pressure and energy in equilibrium
- T ~ 1/a (except when $\mathrm{g}_{* s}$ changes, e.g. particle annihil.)
- thermal history, freeze-out of particles when interactions become too slow, WIMPs
- origin of CMB
- abundances of light elements
observational "pillars" of the cosmological standard model

