Introduction to (homogeneous) cosmology

Martin Kunz Université de Genève

global outline

fundamental notions, the FLRW universe

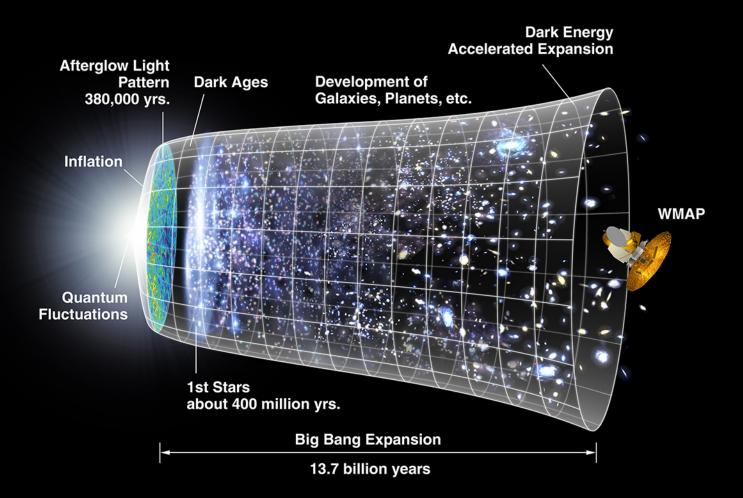
- metric, scale factor, redshift, distances
- Einstein eqn's, evolution of the universe
- some resources
- thermal history
 - relativistic and non-relativistic particles
 - decouplings (neutrinos, photons, WIMP's)
 - BBN basics
- statistics & forecasting
 - basic notions
 - forecasting, Fisher matrix
 - Bayes, parameter estimation, model comparison
 - practical aspects

how to lie convincingly

real

particles

Brief history of the Universe

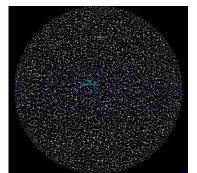


orders of magnitude

cosmology also goes right down to the Planck scale... ... but for now we are more interested in large scales!

solar system: size: billions of km (10^9 km) $1AU = 1.5x10^8$ km Pluto ~ 40 AU, Voyager 1: 128 AU

galaxies: size ~ 10 kpc 1pc ≈ 3 light years = 3x10¹³ km billions of stars (sizes vary!)



(observable) universe size ~ 10 Gpc (~ 10^{23} km vs I_P ~ 10^{-38} km) ~ 10^{11} galaxies

Outline for today

metric structure: cosmography

- the metric
- expansion of the universe, redshift and Hubble's law
- cosmological distances and the age of the universe

content and evolution of the universe

- Einstein equations and the Bianchi identity
- the critical density and the Ω 's
- the evolution of the universe
- short list of key resources
- some more things (in case we get bored)

The metric

- Cosmological principle: all observers in the universe are equivalent
- implication: the universe is homogeneous and isotropic
- at least spatially -> FLRW
- theorem (differential geometry): spatial sections have constant curvature K(t)

$$ds^{2} = dt^{2} - \left(\frac{dR^{2}}{1 - KR^{2}} + R^{2}d\Omega\right) \overset{\text{K} > 0}{\underset{\text{K} < 0}{}} \overset{\text{K} < 0}{\underset{\text{K} < 0}{} \overset{\text{K} < 0}{} \overset{\text{K$$

The scale factor

 Maximal symmetry for spatial sections imposes an even stronger constraint: setting R(t) = a(t) r, the line element has the form

$$ds^2 = dt^2 - a(t)^2 \left(\frac{dr^2}{1 - \kappa r^2} + r^2 d\Omega\right)$$

where $k = \pm 1$ or 0 is a constant

For this metric, the curves (r,θ,φ)=const are geodesics for a 4-velocity u=(1,0,0,0) since Γ^μ₀₀=0 [check!] -> comoving coordinates

(geodesic eqn:
$$\ddot{X}^{\mu} + \Gamma^{\mu}_{lphaeta}\dot{X}^{lpha}\dot{X}^{eta}=0$$
)

The cosmological redshift

Let us consider two galaxies at constant comoving separation *d*, then for light moving from one to the other(ds²=0):

$$d = \int_{t_1}^{t_0} dt / a(t) = \int_{t_1 + \delta t_1}^{t_0 + \delta t_0} dt / a(t),$$

if δt_1 is e.g. the cycle time at emission, then to keep d constant we need that for δt_0 :

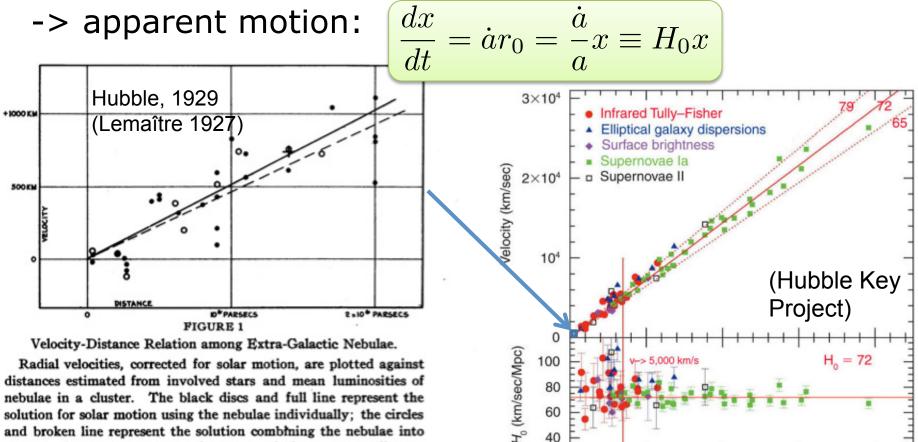
$$\frac{\delta t_0}{a(t_0)} = \frac{\delta t_1}{a(t_1)} \Rightarrow \frac{\delta t_1}{\delta t_0} = \frac{\nu_0}{\nu_1} = \frac{a(t_1)}{a(t_0)} = \frac{\lambda_1}{\lambda_0}$$

we observe therefore a redshift:

$$z \equiv (\lambda_0 - \lambda_1)/\lambda_1 \Rightarrow 1 + z = \frac{a(t_0)}{a(t_1)}$$

The Hubble law

for two galaxies at a fixed **comoving** distance r_0 : **physical** distance $x(t) = a(t)r_0$



100

200

Distance (Mpc)

300

400

and broken line represent the solution combining the nebulae into groups; the cross represents the mean velocity corresponding to the mean distance of 22 nebulae whose distances could not be estimated individually.

some philosophical remarks

The FLRW metric is just picked 'by hand'

$$ds^{2} = dt^{2} - a(t)^{2} \left(\frac{dr^{2}}{1 - \kappa r^{2}} + r^{2}d\Omega\right)$$

- This needs to be tested as much as possible!
- E.g. an even more symmetric possibility would be the de Sitter metric, but observations rule it out!
- We know that the Universe is not exactly FLRW, it's not entirely clear yet how important this is
- FLRW leads to testable consequences (see the '3 pillars' tomorrow there are more tests)
- Unfortunately we have only 1 Universe, and we can't even go everywhere, we can only observe

cosmological distances

simpler to transform the distance variable r to χ :

$$r = S_{\kappa}(\chi) = \begin{cases} \sin \chi & \kappa = +1 \\ \chi & \kappa = 0 \\ \sinh \chi & \kappa = -1 \end{cases}$$

$$\Rightarrow ds^2 = dt^2 - a^2(t) \left(d\chi^2 + S_\kappa(\chi)^2 d\Omega \right)$$

$$\Rightarrow dV = a_0^2 S_\kappa(\chi)^2 d\Omega d\chi \text{ volume element today}$$

we can now *define* a «metric» distance:

$$d_m(\chi) = a_0 S_\kappa(\chi) \qquad \chi = \int_{t_1}^{t_0} \frac{dt}{a(t)} = \int_{a_1}^{a_0} \frac{da}{a\dot{a}} = \frac{1}{a_0} \int_0^{z_1} \frac{dz}{H(z)}$$

cosmological distances

but physical distances need to be **observables**!

surface: $4\pi d_m^2$

1) angular diameter distance: object of physical size D observed under angle δ , but photons were emitted at time $t_1 < t_0$:

$$D = a(t_1)S_{\kappa}(\chi)\delta = \frac{a(t_1)}{a_0}a_0S_{\kappa}(\chi)\delta \equiv d_A\delta$$

$$d_A = \frac{1}{1+z}d_m$$

2) luminosity distance: consider observed flux F for an object with known intrinsic luminosity L («standard candle»)

$$F \equiv \frac{L}{4\pi d_L^2}$$

source emitting one photon per second:

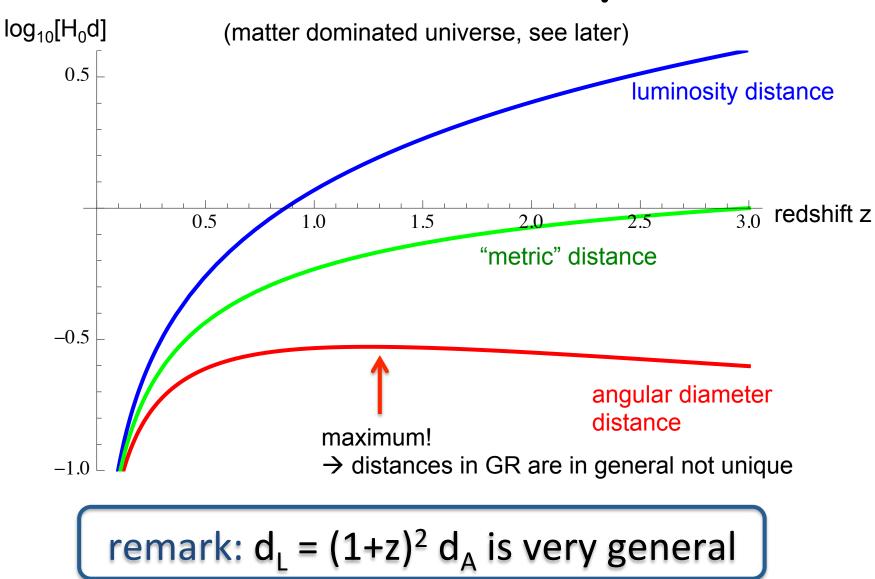
- 1) redshift
- 2) increased time between arrivals

$$d_L = (1+z)d_m$$

D

δ

distance example



age of the universe

computing the age of the universe is very straightforward:

$$t_0 = \int_0^{t_0} dt = \int_0^{a_0} \frac{da}{\dot{a}} = \int_0^{a_0} \frac{da}{aH(a)} = \int_0^\infty \frac{dz}{H(z)(1+z)}$$

but we need to know the evolution of the scale factor a(t). This in turn depends on the contents of the universe...

cue Einstein:
$$G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G_N T_{\mu\nu}$$

geometry content

what is in the universe?

- homogeneous and isotropic metric: matter does also have to be distributed in this way
- in **some** coordinate system the energy momentum tensor has the form:

$$T_0^i = 0, \quad T_1^1 = T_2^2 = T_3^3$$

and the components depend only on time

$$T^{\nu}_{\mu} = \operatorname{diag}\left(\rho(t), -p(t), -p(t), -p(t)\right)$$

- the pressure determines the nature of the fluid,
 p = w ρ:
 - w = 0 : pressureless `dust', `matter'
 - w = 1/3 : radiation

– what is w for
$$T_{\mu
u}=\Lambda g_{\mu
u}$$
 ?

the conservation equation

• Bianchi identity (geometric identity for $G_{\mu\nu}$):

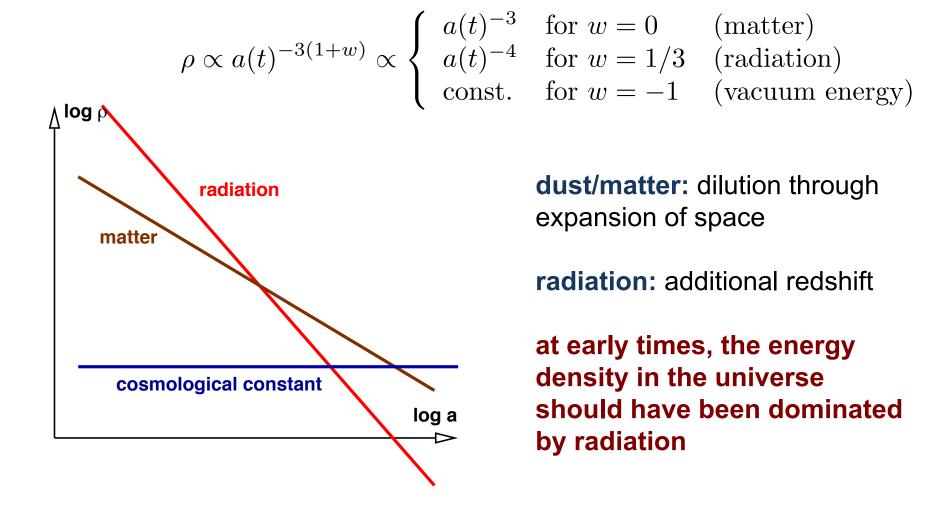
$$T^{\mu\nu}_{;\mu} = 0 = G^{\mu\nu}_{;\mu}$$

$$T_{0;\nu}^{\nu} = \dot{\rho} + \Gamma_{i0}^{i}(\rho + p) = \dot{\rho} + 3\left(\frac{\dot{a}}{a}\right)(\rho + p) = 0$$
(1+w)p

Questions (5 minutes, in groups):

- for a constant w, what is the evolution of ρ(a)?
 (eliminate the variable t from the equation)
- for the three cases w = 0, 1/3, -1, what is $\rho(a)$?
- does the result make sense?

evolution of the energy densities



Einstein equations

- we now have all necessary ingredients to compute the Einstein equations:
 - metric
 - energy-momentum tensor

$$G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G_N T_{\mu\nu}$$
$$R_{\mu\nu} \equiv R^{\alpha}_{\mu\alpha\nu} \qquad R \equiv g^{\mu\nu}R_{\mu\nu}$$
$$R^{\alpha}_{\beta\mu\nu} = \Gamma^{\alpha}_{\nu\beta,\mu} - \Gamma^{\alpha}_{\mu\beta,\nu} + \Gamma^{\delta}_{\nu\beta}\Gamma^{\alpha}_{\mu\delta} - \Gamma^{\delta}_{\mu\beta}\Gamma^{\alpha}_{\nu\delta}$$
$$\Gamma^{\alpha}_{\mu\nu} = \frac{1}{2}g^{\alpha\beta} \left(g_{\beta\mu,\nu} + g_{\beta\nu,\mu} - g_{\mu\nu,\beta}\right)$$

try to do it yourselves... $\textcircled{\odot}$

Friedmann equations

you should find:

$$\begin{split} R_{00} &= -3\frac{\ddot{a}}{a} \qquad R_{ij} = -\left[\frac{\ddot{a}}{a} + 2\left(\frac{\dot{a}}{a}\right)^2 + 2\frac{\kappa}{a^2}\right]g_{ij} \\ R &= -6\left[\frac{\ddot{a}}{a} + \left(\frac{\dot{a}}{a}\right)^2 + \frac{\kappa}{a^2}\right] \qquad \text{the space-time curvature is non-zero even for k=0!} \\ \text{0-0 component:} \qquad \left(\frac{\dot{a}}{a}\right)^2 + \frac{\kappa}{a^2} = \frac{8\pi G_N}{3}\rho^{-\kappa} \text{ sum of }\rho \text{ from all types of energy} \\ \text{i-i component:} \qquad 2\left(\frac{\ddot{a}}{a}\right) + \left(\frac{\dot{a}}{a}\right)^2 + \frac{\kappa}{a^2} = -8\pi G_N p \end{split}$$

Friedmann equations II

three comments:

you can combine the two equations to find

$$\left(\frac{\ddot{a}}{a}\right) = -\frac{4\pi G_N}{3}\left(\rho + 3p\right)$$

-> the expansion is accelerating if p < -p/3

- the two Einstein equations and the conservation equation are not independent
- there are 3 unknown quantities (ρ, p and a) but only two equations, so one quantity needs to be given (normally p) – as well as the constant k.

the critical density

Friedmann eq. $\left(\frac{1}{2}\right)$

$$\frac{\dot{a}}{a}\bigg)^2 + \frac{\kappa}{a^2} = \frac{8\pi G_N}{3}\rho$$

 $H \equiv \left(\frac{\dot{a}}{a}\right) \qquad \qquad \frac{\kappa}{a^2 H^2} = \frac{8\pi G_N \rho}{3H^2} - 1 \equiv \frac{\rho}{\rho_c} - 1 \equiv \Omega - 1$

 $\begin{aligned} \Omega(t) > 1 & \Rightarrow & \kappa > 0 \Rightarrow \textbf{closed} \text{ universe} \\ \Omega(t) = 1 & \Rightarrow & \kappa = 0 \Rightarrow \textbf{flat} \text{ universe} \\ \Omega(t) < 1 & \Rightarrow & \kappa < 0 \Rightarrow \textbf{open} \text{ universe} \end{aligned}$

and:
$$\frac{d}{dt} \left(\frac{\Omega - 1}{\kappa} \right) = \frac{d}{dt} \frac{1}{\dot{a}^2} = -2\frac{\ddot{a}}{\dot{a}^3}$$

 $|\Omega - 1| \quad (\kappa \neq 0)$

>0 for expanding universe filled with dust or radiation (and k ≠ 0)
-> the universe becomes "less flat"
-> strange (why?)

' Ω form' of Friedmann eq.

notation:

 $\Omega_X =$

 $\left. \frac{\rho_X}{\rho_c} \right|$

Friedmann eq.
$$\left(\frac{\dot{a}}{a}\right)^2 + \frac{\kappa}{a^2} = \frac{8\pi G_N}{3}\rho$$

evolution of ρ for the «usual» 4 constituents:

- radiation: a⁻⁴
- dust: a⁻³
- curvature: a^{-2} (H² + k/a² ~ ρ)
- cosmological constant: a⁰

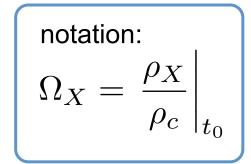
$$H^{2} = H_{0}^{2} \left[\frac{8\pi G}{3H_{0}^{2}} \rho_{0} \left(\frac{a}{a_{0}} \right)^{-n} + \ldots + \frac{\kappa}{H_{0}^{2}a_{0}^{2}} \left(\frac{a}{a_{0}} \right)^{-2} \right]$$
$$H^{2} = H_{0}^{2} \left[\Omega_{r} \left(\frac{a}{a_{0}} \right)^{-4} + \Omega_{m} \left(\frac{a}{a_{0}} \right)^{-3} + \Omega_{\Lambda} + \Omega_{\kappa} \left(\frac{a}{a_{0}} \right)^{-2} \right]$$
$$\Omega_{r} + \Omega_{m} + \Omega_{\Lambda} + \Omega_{\kappa} = 1$$

evolution of the universe I

evolution of ρ for the «usual» 4 constituents:

- radiation: a⁻⁴
- dust: a⁻³
- curvature: a^{-2} (H² + k/a² ~ ρ)
- cosmological constant: a⁰

 $a(t) \propto t^{1/2}$



the primordial universe is dominated by radiation – sufficiently early we can neglect the rest!

$$\left(\frac{\dot{a}}{a}\right)^2 = H_0^2 \Omega_r \left(\frac{a_0}{a}\right)^4 \Rightarrow a\dot{a} = \text{const.} \Rightarrow ada \propto dt$$

"radiation-dominated expansion law"

evolution of the universe II

later, the radiation can be neglected (and we set $\Lambda = 0$)

$$\dot{a}^2 = -\kappa + \frac{C}{a}, \qquad C = H_0 \Omega_0 a_0^3 > 0$$

1) $\kappa = 0 \rightarrow \sqrt{a} da = \sqrt{C} dt \text{ et } a(0) = 0 \Rightarrow a(t) \propto t^{2/3}$

"matter-dominated expansion"

2)
$$\kappa = 1 \to \dot{a}^2 = \frac{C}{a} - 1$$

- for a=C we have that $\dot{a}=0$ and the universe changes from expansion to contraction/collapse
- the substitution $a = C \sin^2 \theta$ leads to $2C \sin^2 \theta d\theta = dt$
- after integration: $t = C(\theta \cos\theta\sin\theta)$
- we have a "big crunch" for $\theta = \pi$ et t= π C

evolution of the universe III

3)
$$\kappa = -1 \rightarrow \dot{a}^2 = \frac{C}{a} + 1$$

- always $\dot{a} \ge 0$ and the universe expands forever
- the substitution $a = C \sinh^2 \chi$ leads to $2C \sinh(\chi)^2 d\chi = dt$

4

- after integration:

$$t = C(\cosh\chi\sinh\chi - \chi)$$
finally we set $\Omega_{\Lambda} = 1$

$$\Omega_r = \Omega_m = \Omega_{\kappa} = 0$$

$$\dot{a}^2 = \frac{1}{3}\Lambda a^2$$

$$a(t) = \exp(Ht), \quad H = \sqrt{\frac{\Lambda}{3}}$$

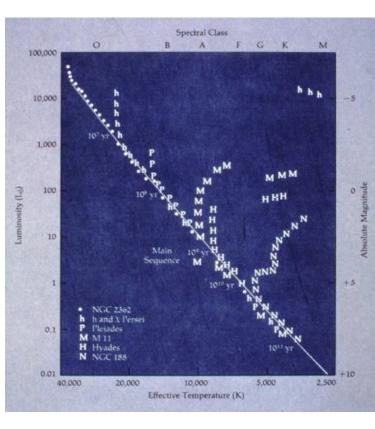
age of the universe revisited

we had:
$$t_0 = \int_0^\infty \frac{dz}{H(z)(1+z)}$$

but for a matter-dominated universe:

$$H = H_0 \left(\frac{a}{a_0}\right)^{-3/2} = H_0 (1+z)^{3/2}$$

$$H_0 t_0 = \int_0^\infty \frac{dz}{(1+z)^{5/2}} = \int_1^\infty \frac{du}{u^{5/2}} = -\frac{2}{3} \left. \frac{1}{u^{3/2}} \right|_1^\infty = \frac{2}{3}$$



 $1/H_0 \sim 9.8 \text{ Gyr}/[H_0/100 \text{ km/s/Mpc}] \sim 13.6 \text{ Gyr} \rightarrow t_0 \sim 9 \text{ Gyr}$ but oldest globular star clusters are older: 11-18 Gyr ...??!!

summary

Methods

- FLRW metric for homogeneous and isotropic space
- perfect fluid energy-momentum tensor
- Einstein eq (Friedmann eq) and Bianchi identity
- photon and particle geodesics

Results

- comoving coordinate system, redshift, Hubble law
- expansion history of universe linked to contents
- distances and redshift give constraints on expansion history and therefore on the contents

Resources (tiny subset!)

- Books & lecture notes
 - Scott Dodelson, "Modern Cosmology", AP 2003
 - Ruth Durrer, "The Cosmic Microwave Background", CUP 2008
 - Lots of reviews (e.g. Euclid theory group, arXiv:1206.1225)
 - Wayne Hu's webpage, background.uchicago.edu
 - my (old) lecture notes, http://theory.physics.unige.ch/~kunz/lectures/ cosmo_II_2005.pdf
- codes
 - Boltzmann codes: CAMB (camb.info), CLASS (class-code.net), etc
 - cosmoMC (with many likelihoods), cosmologist.info/cosmomc/
 - icosmo, icosmos, Fisher4Cast, etc
- lots of cosmological data sets are publicly available!
 - **Planck:** http://www.sciops.esa.int/index.php?project=planck&page=Planck_Legacy_Archive
 - WMAP (and others): Lambda archive, lambda.gsfc.nasa.gov
 - supernova data (e.g. supernova.lbl.gov/Union/), ...

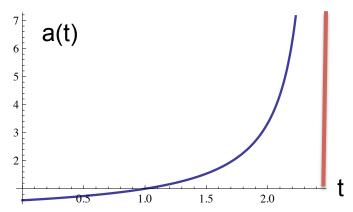
phantom DE and the big rip

- what happens if $p/\rho = w < -1$?
- (apart from classical and quantum instabilities)

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = H_{0}^{2} \left(\Omega_{m} a^{-3} + (1 - \Omega_{m}) a^{-3(1+w)}\right) \to H_{0}^{2} (1 - \Omega_{m}) a^{-3(1+w)}$$

 solve for a(t) with a(t₀)=1; let's pick w = -5/3 (similar for any w<-1)

$$\rightarrow a(t) = \left(1 - H_0\sqrt{1 - \Omega_m}(t - t_0)\right)^{-1}$$



infinite expansion at finite age!
-> big rip

LTB and Backreaction

Two large classes of models:

- Inhomogeneous cosmology: Copernican Principle is wrong, Universe is not homogeneous (and we live in a special place).
- Backreaction: GR is a nonlinear theory, so averaging is non-trivial. The evolution of the 'averaged' FLRW case may not be the same as the average of the true Universe.

(& relativistic and large-angle effects)

Lemaitre-Tolman-Bondi

We live in the center of the world!

- LTB metric: generalisation of FLRW to spherical symmetry, with new degrees of freedom
- -> can choose a radial density profile, e.g. a huge void, to match one chosen quantity
- can mimic distance data (need to go out very far)
- constrates large effect from inhomogeneities
- ⁽²⁾ unclear if all data can be mimicked (ISW, kSZ)
- 8 mechanism to create such huge voids?
- ⁽²⁾ fine-tuning to live in centre, ca 1:(1000)³ iirc

testing the geometry directly

Is it possible to test the geometry directly? Yes! Clarkson et al (2008) -> in FLRW (integrate along ds=0):

$$H_0 D(z) = \frac{1}{\sqrt{-\Omega_k}} \sin\left(\sqrt{-\Omega_k} \int_0^z \frac{H_0}{H(u)} du\right)$$
$$\Rightarrow H_0 D'(z) = \frac{H_0}{H(z)} \cos\left(\sqrt{-\Omega_k} \int_0^z \frac{H_0}{H(u)} du\right)$$
$$\rightarrow \left(HD'\right)^2 - 1 = \sin^2(\cdots) = -\Omega_k \left(H_0 D\right)^2$$

It is possible to reconstruct the curvature by comparing a distance measurement (which depends on the geometry) with a radial measurement of H(z) without dependence on the geometry.

Backreaction

normal approach: separation into "background" and "perturbations"

$$g_{\mu\nu}(t,x) = \bar{g}_{\mu\nu}(t) + h_{\mu\nu}(t,x)$$
$$\rho(t,x) = \bar{\rho}(t) + \delta\rho(t,x)$$

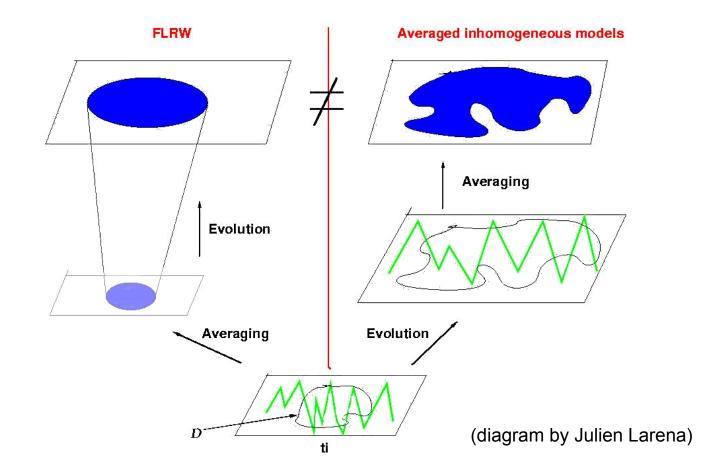
but which is the "correct" background, and why should it evolve as if it was a solution of Einsteins equations? The averaging required for the background does not commute with derivatives or quadratic expressions,

$$\left(\partial_t \langle \phi \rangle \neq \langle \partial_t \phi \rangle \qquad \langle \theta^2 \rangle \neq \langle \theta \rangle^2\right)$$

-> can derive set of averaged equations, taking into account that some operations not not commute: "Buchert equations"

average and evolution

the average of the evolved universe is in general not the evolution of the averaged universe!



Buchert equations

- Einstein eqs, irrotational dust, 3+1 split (as defined by freely-falling observers)
- averaging over spatial domain D
- $a_D \sim V_D^{1/3}$ [<-> enforce isotropic & homogen. coord. sys.]
- set of effective, averaged, local eqs.:

(θ expansion rate, σ shear, from expansion tensor Θ)

- <ρ> ~ a⁻³
- looks like Friedmann eqs., but with extra contribution!

Backreaction

- ③ is certainly present at some level
- © could possibly explain (apparent) acceleration without dark energy or modifications of gravity
- ③ then also solves coincidence problem
- e amplitude unknown (too small? [*])
- Scaling unknown (shear vs variance of expansion)
- B link with observations difficult

[*] Poisson eq:
$$-\left(\frac{k}{Ha}\right)^2\phi = \frac{3}{2}\delta$$
 (k = aH : horizon size)

=> Φ never becomes large, only δ ! (but this is not a sufficient argument)