## Galaxies and Clusters, 2

## The Large scale Structure of the Universe

Alain Blanchard

alain.blanchard@irap.omp.eu



## Count in Cell I

Lets take a finite volume V:

$$
V=\sum_{i} d V_{i}
$$

## Count in Cell I

Lets take a finite volume V :

$$
V=\sum_{i} d V_{i}
$$

$n_{i}=$ number of galaxies in cell $i=\left\{\begin{array}{l}0 \\ 1\end{array}\right.$

## Count in Cell I

Lets take a finite volume V:

$$
V=\sum_{i} d V_{i}
$$

$n_{i}=$ number of galaxies in cell $i=\left\{\begin{array}{l}0 \\ 1\end{array}\right.$
with:

$$
<n_{i}>=<n_{i}>=d N_{i}=\bar{n} d V_{i}
$$

## Count in Cell I

Lets take a finite volume V:

$$
V=\sum_{i} d V_{i}
$$

$$
n_{i}=\text { number of galaxies in cell } i=\left\{\begin{array}{l}
0 \\
1
\end{array}\right.
$$

with:

$$
<n_{i}^{2}>=<n_{i}>=d N_{i}=\bar{n} d V_{i}
$$

## Count in Cell II

$$
\langle N\rangle=\sum_{i}\left\langle n_{i}\right\rangle=\sum_{i} \bar{n} d V_{i}=\bar{n} V
$$

## Count in Cell II

$$
\begin{aligned}
<N> & =\sum_{i}<n_{i}>=\sum_{i} \bar{n} d V_{i}=\bar{n} V \\
<N^{2}> & =\sum_{i, j}<n_{i} n_{j}> \\
& =\sum_{i}<n_{i}^{2}>+\sum_{i \neq j}<n_{i} n_{j}> \\
& =\bar{n} V+\int \bar{n}^{2} d V_{1} d V_{2}\left(1+\xi\left(r_{12}\right)\right)
\end{aligned}
$$

## Count in Cell III

Central moments:

## Count in Cell III

Central moments:

$$
\begin{aligned}
\mu_{2}=<(N-\bar{N})^{2}> & =<N^{2}>-\bar{N}^{2} \\
& =\bar{n} V+\int \bar{n}^{2} d V_{1} d V_{2} \xi\left(r_{12}\right)
\end{aligned}
$$

## Count in Cell III

Central moments:

$$
\begin{aligned}
\mu_{2}=<(N-\bar{N})^{2}> & =<N^{2}>-\bar{N}^{2} \\
& =\bar{n} V+\int \bar{n}^{2} d V_{1} d V_{2} \xi\left(r_{12}\right)
\end{aligned}
$$

Third centred moment:

$$
\begin{aligned}
\mu_{3}=<(N-\bar{N})^{3}> & =3<(N-\bar{N})^{2}>-2<N> \\
& +\int \bar{n}^{3} d V_{1} d V_{2} d V_{3} \zeta\left(r_{12}, r_{23}\right)
\end{aligned}
$$

## Count in Cell III

Central moments:

$$
\begin{aligned}
\mu_{2}=<(N-\bar{N})^{2}> & =<N^{2}>-\bar{N}^{2} \\
& =\bar{n} V+\int \bar{n}^{2} d V_{1} d V_{2} \xi\left(r_{12}\right)
\end{aligned}
$$

Third centred moment:

$$
\begin{aligned}
\mu_{3}=<(N-\bar{N})^{3}> & =3<(N-\bar{N})^{2}>-2<N> \\
& +\int \bar{n}^{3} d V_{1} d V_{2} d V_{3} \zeta\left(r_{12}, r_{23}\right)
\end{aligned}
$$

## r.m.s. fluctuation

$$
\sigma_{V}=<\left(\frac{\delta N}{\bar{N}}\right)^{2}>^{1 / 2}=<\left(\frac{N-\bar{N}}{\bar{N}}\right)^{2}>^{1 / 2}
$$

## r.m.S. fluctuation

$$
\sigma_{V}=<\left(\frac{\delta N}{\bar{N}}\right)^{2}>^{1 / 2}=<\left(\frac{N-\bar{N}}{\bar{N}}\right)^{2}>^{1 / 2}
$$

and :

$$
<(N-\bar{N})^{2}>=<N^{2}>-\bar{N}^{2}
$$

## r.m.S. fluctuation

$$
\sigma_{V}=<\left(\frac{\delta N}{\bar{N}}\right)^{2}>^{1 / 2}=<\left(\frac{N-\bar{N}}{\bar{N}}\right)^{2}>^{1 / 2}
$$

and :

$$
<(N-\bar{N})^{2}>=<N^{2}>-\bar{N}^{2}
$$

so:

$$
<\left(\frac{N-\bar{N}}{\bar{N}}\right)^{2}>=\frac{1}{\bar{N}}+\frac{1}{V^{2}} \int d V_{1} d V_{2} \xi\left(r_{12}\right)
$$

## r.m.s. fluctuation

$$
\sigma_{V}=<\left(\frac{\delta N}{\bar{N}}\right)^{2}>^{1 / 2}=<\left(\frac{N-\bar{N}}{\bar{N}}\right)^{2}>^{1 / 2}
$$

and :

$$
<(N-\bar{N})^{2}>=<N^{2}>-\bar{N}^{2}
$$

SO:

$$
<\left(\frac{N-\bar{N}}{\bar{N}}\right)^{2}>=\frac{1}{\bar{N}}+\frac{1}{V^{2}} \int d V_{1} d V_{2} \xi\left(r_{12}\right)
$$

In short:

$$
\sigma_{V}^{2} \approx \bar{\xi}
$$

## Normalization and Bias

Amplitude of fluctuations are usually referred for a sphere of $8 h^{-1} \mathrm{Mpc}$ :

$$
\sigma_{8}=<\left(\frac{\Delta \rho}{\rho}\left(R=8 h^{-1} \mathrm{Mpc}\right)\right)^{2}>^{1 / 2}
$$

## Normalization and Bias

Amplitude of fluctuations are usually referred for a sphere of $8 h^{-1} \mathrm{Mpc}$ :

$$
\sigma_{8}=<\left(\frac{\Delta \rho}{\rho}\left(R=8 h^{-1} \mathrm{Mpc}\right)\right)^{2}>^{1 / 2}
$$

Simple bias :

$$
\left.\left.\frac{\delta \rho}{\rho}\right)_{g}=b \times \frac{\delta \rho}{\rho}\right)_{D M}
$$

SO

$$
\xi_{g}(r)=b^{2} \xi_{D M}(r)
$$

## Normalization and Bias

Amplitude of fluctuations are usually referred for a sphere of $8 h^{-1} \mathrm{Mpc}$ :

$$
\sigma_{8}=<\left(\frac{\Delta \rho}{\rho}\left(R=8 h^{-1} \mathrm{Mpc}\right)\right)^{2}>^{1 / 2}
$$

Simple bias :

$$
\left.\left.\frac{\delta \rho}{\rho}\right)_{g}=b \times \frac{\delta \rho}{\rho}\right)_{D M}
$$

SO

$$
\xi_{g}(r)=b^{2} \xi_{D M}(r)
$$

one might have more complicated relation between galaxies and DM, and the bias can be a function of scale:

$$
b(r)
$$

## Angular correlation function

Definition:

$$
d P=\bar{n} d \Omega(1+w(\theta))
$$

## Angular correlation function

Definition:

$$
d P=\bar{n} d \Omega(1+w(\theta))
$$

We introduce the depth of the survey $D_{*}$ :

$$
D_{*}=\left(\frac{L_{*}}{4 \pi l}\right)^{1 / 2} \text { and } y=\frac{r}{D_{*}}
$$

## Angular correlation function

Definition:

$$
d P=\bar{n} d \Omega(1+w(\theta))
$$

We introduce the depth of the survey $D_{*}$ :

$$
D_{*}=\left(\frac{L_{*}}{4 \pi l}\right)^{1 / 2} \text { and } y=\frac{r}{D_{*}}
$$

from $\xi(r)$ one can get $w(\theta)$

## Scaling of $w(\theta)$

## Scaling of $w(\theta)$

$$
w(\theta)=\frac{1}{D_{*}} \frac{\int_{0}^{+\infty} d y y^{4} \psi(y)^{2} \int_{-\infty}^{+\infty} d u \xi\left(\left(u^{2}+D_{*}^{2} y^{2} \theta^{2}\right)^{1 / 2}\right)}{\left(\int_{0}^{+\infty} y^{2} \psi(y) d y\right)^{2}}
$$

(Peebles, 1980, LSS of the Universe)

## Scaling of $w(\theta)$

$$
w(\theta)=\frac{1}{D_{*}} \frac{\int_{0}^{+\infty} d y y^{4} \psi(y)^{2} \int_{-\infty}^{+\infty} d u \xi\left(\left(u^{2}+D_{*}^{2} y^{2} \theta^{2}\right)^{1 / 2}\right)}{\left(\int_{0}^{+\infty} y^{2} \psi(y) d y\right)^{2}}
$$

(Peebles, 1980, LSS of the Universe) So finally:

$$
w(\theta)=\frac{1}{D_{*}} W\left(D_{*} \theta\right)
$$

## Observations



## Observations



## Observed properties

Angular correlation function:

$$
w(\theta) \propto \theta^{-\delta} \text { with } \delta=0.77 \pm 0.04
$$

## Observed properties

Angular correlation function:

$$
w(\theta) \propto \theta^{-\delta} \text { with } \delta=0.77 \pm 0.04
$$

For powerlaw $\xi(r)=\left(r / r_{0}\right)^{-\gamma}$ :

$$
\gamma=1+\delta \sim 1.77 \text { and } r_{0} \sim 5 h^{-1} M p c
$$

## Observed properties

Angular correlation function:

$$
w(\theta) \propto \theta^{-\delta} \text { with } \delta=0.77 \pm 0.04
$$

For powerlaw $\xi(r)=\left(r / r_{0}\right)^{-\gamma}$ :

$$
\gamma=1+\delta \sim 1.77 \text { and } r_{0} \sim 5 h^{-1} M p c
$$

Three point correlation function:
$\xi^{(3)}\left(r_{a}, r_{b}, r_{c}\right)=Q\left(\xi\left(r_{a}\right) \xi\left(r_{b}\right)+\xi\left(r_{b}\right) \xi\left(r_{c}\right)+\xi\left(r_{c}\right) \xi\left(r_{a}\right)\right)$
avec :

$$
Q \sim 1.27
$$

## Dependence

Ex: luminosity:

$$
d P=\phi(M) d M d V
$$

and:
$d P_{12}(r)=\left(\phi\left(M_{1}\right) \phi\left(M_{2}\right)+\Gamma\left(M_{1}, M_{2}, r\right)\right) d M_{1} d V_{1} d M_{2} d V_{2}$

## Dependence

Ex: luminosity:

$$
d P=\phi(M) d M d V
$$

and:
$d P_{12}(r)=\left(\phi\left(M_{1}\right) \phi\left(M_{2}\right)+\Gamma\left(M_{1}, M_{2}, r\right)\right) d M_{1} d V_{1} d M_{2} d V_{2}$
Unbiased:

$$
\Gamma\left(M_{1}, M_{2}, r\right)=\phi\left(M_{1}\right) \phi\left(M_{2}\right) \xi(r)
$$

## Dependence

Ex: luminosity:

$$
d P=\phi(M) d M d V
$$

and:
$d P_{12}(r)=\left(\phi\left(M_{1}\right) \phi\left(M_{2}\right)+\Gamma\left(M_{1}, M_{2}, r\right)\right) d M_{1} d V_{1} d M_{2} d V_{2}$
Unbiased:

$$
\Gamma\left(M_{1}, M_{2}, r\right)=\phi\left(M_{1}\right) \phi\left(M_{2}\right) \xi(r)
$$

Simple bias:

$$
\xi_{>L}(r)=b(L)^{2} \xi(r)
$$

## Two point correlation function: Definition

## Two point correlation function: Definition

Need to know the average galaxy number density:

$$
\bar{n}(L)=\int_{L}^{+\infty} \phi(L) d L
$$

## Two point correlation function: Definition

Need to know the average galaxy number density:

$$
\bar{n}(L)=\int_{L}^{+\infty} \phi(L) d L
$$

By definition:

$$
d P(r)=d N(r)=\bar{n} d V(1+\xi(r))
$$

## Two point correlation function:

 Estimation
## Two point correlation function:

## Estimation

From a sample, number of neighbours:

$$
d N_{i}(r)=\bar{n} d V_{i}(1+\xi(r))
$$

## Two point correlation function:

## Estimation

From a sample, number of neighbours:

$$
d N_{i}(r)=\bar{n} d V_{i}(1+\xi(r))
$$

so an estimation of $\xi$ is given by :

$$
\xi(r)=\frac{\sum_{i} d N_{i}(r)}{\bar{n} \sum_{i} d V_{i}}-1
$$

## Two point correlation function: Estimation

From a sample, number of neighbours:

$$
d N_{i}(r)=\bar{n} d V_{i}(1+\xi(r))
$$

so an estimation of $\xi$ is given by :

$$
\xi(r)=\frac{\sum_{i} d N_{i}(r)}{\bar{n} \sum_{i} d V_{i}}-1 .=\frac{N_{d d}(r)}{\bar{n} \sum_{i} d V_{i}}-1 .
$$

$N_{d d}(r)$ is the number of pairs of galaxies with separaration between $r$ and $r+d r$.

## Estimators

## Estimators

## Two (different) problems:

## Estimators

Two (different) problems:

- estimation of $\bar{n}(->\phi(L))$


## Estimators

Two (different) problems:

- estimation of $\bar{n}(->\phi(L))$
- computation of $d V_{i}$


## Estimators

Two (different) problems:

- estimation of $\bar{n}(->\phi(L))$
- computation of $d V_{i}$

Volume element $d V_{i}$ :

## Estimators

Two (different) problems:

- estimation of $\bar{n}(->\phi(L))$
- computation of $d V_{i}$

Volume element $d V_{i}$ :

- analytical


## Estimators

Two (different) problems:

- estimation of $\bar{n}(->\phi(L))$
- computation of $d V_{i}$

Volume element $d V_{i}$ :

- analytical
- Monte Carlo integration:

$$
d V_{i}=\frac{\left.d N_{d r}\right)_{i}}{n_{p}}
$$

( $n_{p}$ being the density of random particules within the survey limits)

## Estimators

Two (different) problems:

- estimation of $\bar{n}(->\phi(L))$
- computation of $d V_{i}$

Volume element $d V_{i}$ :

- analytical
- Monte Carlo integration:

$$
d V_{i}=\frac{\left.d N_{d r}\right)_{i}}{n_{p}}
$$

( $n_{p}$ being the density of random particules within the survey limits)so:

$$
\sum d V_{i}=\frac{1}{n_{p}} N_{d r}(r)
$$

## Estimators

## Estimators

$$
\xi(r)=\frac{n_{p}}{\bar{n}} \frac{N_{d d}(r)}{N_{d r}(r)}-1
$$

## Estimators

$$
\xi(r)=\frac{n_{p}}{\bar{n}} \frac{N_{d d}(r)}{N_{d r}(r)}-1
$$

for a fair sample:

$$
\left.\left.<d V_{i}\right)_{g}>=<d V_{i}\right)_{p}>
$$

and :

$$
\bar{n}=\frac{N_{g}}{V}
$$

## Estimators

$$
\xi(r)=\frac{n_{p}}{\bar{n}} \frac{N_{d d}(r)}{N_{d r}(r)}-1
$$

for a fair sample:

$$
\left.\left.<d V_{i}\right)_{g}>=<d V_{i}\right)_{p}>
$$

and :

$$
\bar{n}=\frac{N_{g}}{V}
$$

SO:

$$
\xi(r)=\left(\frac{n_{p}}{\bar{n}}\right)^{2} \frac{N_{d d}(r)}{N_{r r}(r)}-1 .=\left(\frac{N_{p}}{N_{g}}\right)^{2} \frac{N_{d d}(r)}{N_{r r}(r)}-1
$$

## Possible biases

## Possible biases

$\xi(r)$ is estimated with an (systematic) uncertainty of $\delta \bar{n} / \bar{n}$.

## Possible biases

$\xi(r)$ is estimated with an (systematic) uncertainty of $\delta \bar{n} / \bar{n}$. If :

$$
\bar{n}=\frac{N_{g}}{V}
$$

## Possible biases

$\xi(r)$ is estimated with an (systematic) uncertainty of $\delta \bar{n} / \bar{n}$.
If :

$$
\bar{n}=\frac{N_{g}}{V}
$$

pair conservation implies:

$$
\int_{\sim V} \xi(r) d V=0
$$

so $\xi$ is forced to become negative on some scale.

## Other estimators

## Other estimators

Hamilton (1993)

$$
\xi(r)=\frac{N_{d d}(r) N_{r r}(r)}{N_{d r}^{2}(r)}-1 .
$$

## Other estimators

Hamilton (1993)

$$
\xi(r)=\frac{N_{d d}(r) N_{r r}(r)}{N_{d r}^{2}(r)}-1 .
$$

Landy and Szalay (1993):

$$
\xi(r)=1 .+\left(\frac{n_{p}}{\bar{n}}\right)^{2} \frac{N_{d d}(r)}{N_{r r}(r)}-2 .\left(\frac{N_{p}}{N_{g}}\right) \frac{N_{d r}(r)}{N_{r r}(r)}
$$

## Other consideration

## Other consideration

In practice one is dealing with flux limited surveys.

## Other consideration

In practice one is dealing with flux limited surveys. In order to give equal statistical weight to equal volumes, only galaxies with $L>L_{0}$ are kept:

$$
w_{i}=w(z)=\frac{n\left(>L_{0}\right)}{n(>L(z))}
$$

## Other consideration

In practice one is dealing with flux limited surveys. In order to give equal statistical weight to equal volumes, only galaxies with $L>L_{0}$ are kept:

$$
w_{i}=w(z)=\frac{n\left(>L_{0}\right)}{n(>L(z))}
$$

Increases the noise, improves the volume surveyed.

## Alternative: $P(k)$

## Alternative: $P(k)$

Troubles with $\xi(r)$ :

- estimation goes as $N_{g}^{2}$.
- errors are not independent.


## Alternative: $P(k)$

Troubles with $\xi(r)$ :

- estimation goes as $N_{g}^{2}$.
- errors are not independent.

Advantage of $P(k)$ :

- estimation goes as $N_{g}$.


## Alternative: $P(k)$

Troubles with $\xi(r)$ :

- estimation goes as $N_{g}^{2}$.
- errors are not independent.

Advantage of $P(k)$ :

- estimation goes as $N_{g}$.

Troubles with $P(k)$ :

- boundaries correction is not trivial.


## 4D Space...

## 4D Space...

$$
\left.D_{i}\right)_{o b s} \propto V_{i}=H_{0} D_{i}+v_{i} \cos (\theta)
$$

## 4D Space...

$$
\left.D_{i}\right)_{o b s} \propto V_{i}=H_{0} D_{i}+v_{i} \cos (\theta)
$$

## Introducing $r_{p}, \pi$

$$
\xi\left(r_{p}, \pi\right)
$$

## 4D Space...

$$
\left.D_{i}\right)_{o b s} \propto V_{i}=H_{0} D_{i}+v_{i} \cos (\theta)
$$

## Introducing $r_{p}, \pi$

$$
\xi\left(r_{p}, \pi\right)
$$

projected:

$$
w_{p}\left(r_{p}\right)=2 \int_{0}^{+\infty} \xi\left(r_{p}, \pi\right) d \pi
$$

## Redshift Space Distorsion: 2dF



## Origin



## Origin



## Origin



Pairwise velocity on small scales Redshift distorsion proportional to
with

$$
\begin{aligned}
& \beta=f \delta \rho / \rho \\
f= & \frac{d \ln D}{d \ln a}
\end{aligned}
$$

## Origin



Pairwise velocity on small scales Redshift distorsion proportional to
with

$$
\begin{gathered}
\beta=f \delta \rho / \rho \\
f=\frac{d \ln D}{d \ln a} \approx \Omega_{M}^{0.55}
\end{gathered}
$$

## Observations: SDSS



## Observations: SDSS



## Observed properties

SDSS, all
For powerlaw $\xi(r) \propto\left(r / r_{0}\right)^{-\gamma}$ :

$$
\gamma \sim 1.84 \text { and } r_{0} \sim 5.59 h^{-1} \mathrm{Mpc}
$$

## SDSS, LRG

$$
r_{0} \sim 10 . h^{-1} \mathrm{Mpc}
$$

## Observations SDSS, LRG



## Observations SDSS, LRG



## Observations SDSS: Boss II



## Observations: <br> the Power Spectrum



## Homogeneity and the

 Cosmological principle
## Homogeneity and the

## Cosmological principle

usually:

$$
\left.\lim _{R=+\infty}<\left(\frac{\delta \rho}{\rho}\right)^{2}(R)\right)>=0
$$

## Homogeneity and the

## Cosmological principle

usually:

$$
\left.\lim _{R=+\infty}<\left(\frac{\delta \rho}{\rho}\right)^{2}(R)\right)>=0
$$

but what we are actually interessed in is:

$$
\lim _{R=+\infty}<\frac{\delta h}{h}(R)>=0
$$

(and remains small for all $R$ ).

## Homogeneity and the

## Cosmological principle

 usually:$$
\left.\lim _{R=+\infty}<\left(\frac{\delta \rho}{\rho}\right)^{2}(R)\right)>=0
$$

but what we are actually interessed in is:

$$
\lim _{R=+\infty}<\frac{\delta h}{h}(R)>=0
$$

(and remains small for all $R$ ).
That is:

$$
\frac{G \delta M}{R} \propto \frac{R^{3} \sqrt{\xi(R)}}{R} \propto \frac{R^{3-\gamma / 2}}{R}=R^{2-\gamma / 2}
$$

not really probe by galaxy surveys...

