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Count in Cell I
Lets take a finite volume V:

V =
∑

i

dVi
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V =
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dVi

ni = number of galaxies in celli =
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1

with:
< ni
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Count in Cell II

< N >=
∑

i

< ni >=
∑

i

ndVi = nV
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Count in Cell II

< N >=
∑

i

< ni >=
∑

i

ndVi = nV

< N 2 > =
∑

i,j

< ninj >

=
∑

i

< n2i > +
∑

i 6=j

< ninj >

= nV +

∫

n2dV1dV2(1 + ξ(r12))
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Count in Cell III
Central moments:
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Count in Cell III
Central moments:

µ2 =< (N −N)2 > = < N 2 > −N
2

= nV +

∫

n2dV1dV2ξ(r12)
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Count in Cell III
Central moments:

µ2 =< (N −N)2 > = < N 2 > −N
2

= nV +

∫

n2dV1dV2ξ(r12)

Third centred moment:

µ3 =< (N −N)3 > = 3 < (N −N)2 > −2 < N >

+

∫

n3dV1dV2dV3ζ(r12, r23)
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Count in Cell III
Central moments:

µ2 =< (N −N)2 > = < N 2 > −N
2

= nV +

∫

n2dV1dV2ξ(r12)

Third centred moment:

µ3 =< (N −N)3 > = 3 < (N −N)2 > −2 < N >

+

∫

n3dV1dV2dV3ζ(r12, r23)

...
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r.m.s. fluctuation

σV =<

(

δN

N

)2

>1/2=<

(

N −N

N

)2

>1/2
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)2
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+
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V 2
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r.m.s. fluctuation

σV =<

(

δN

N

)2

>1/2=<

(

N −N

N

)2

>1/2

and :

<
(

N −N
)2
>=< N 2 > −N

2

so:

<

(

N −N

N

)2

> =
1

N
+

1

V 2

∫

dV1dV2ξ(r12)

In short: σ2V ≈ ξ
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Normalization and Bias
Amplitude of fluctuations are usually referred for a
sphere of8h−1Mpc:

σ8 =<

(

∆ρ

ρ
(R = 8h−1Mpc)

)2

>1/2
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Normalization and Bias
Amplitude of fluctuations are usually referred for a
sphere of8h−1Mpc:

σ8 =<

(

∆ρ

ρ
(R = 8h−1Mpc)

)2

>1/2

Simple bias :
δρ

ρ
)g = b×

δρ

ρ
)DM

so
ξg(r) = b2ξDM(r)
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Normalization and Bias
Amplitude of fluctuations are usually referred for a
sphere of8h−1Mpc:

σ8 =<

(

∆ρ

ρ
(R = 8h−1Mpc)

)2

>1/2

Simple bias :
δρ

ρ
)g = b×

δρ

ρ
)DM

so
ξg(r) = b2ξDM(r)

one might have more complicated relation between
galaxies and DM, and the bias can be a function of
scale:

b(r)

...
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Angular correlation function
Definition:

dP = ndΩ(1 + w(θ))
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Angular correlation function
Definition:

dP = ndΩ(1 + w(θ))

We introduce the depth of the surveyD∗:

D∗ =

(

L∗

4πl

)1/2

and y =
r

D∗
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Angular correlation function
Definition:

dP = ndΩ(1 + w(θ))

We introduce the depth of the surveyD∗:

D∗ =

(

L∗

4πl

)1/2

and y =
r

D∗

from ξ(r) one can getw(θ)
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Scaling ofw(θ)
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Scaling ofw(θ)

w(θ) =
1

D∗

∫

+∞

0
dyy4ψ(y)2

∫

+∞

−∞
duξ((u2 +D2

∗
y2θ2)1/2)

(

∫

+∞

0
y2ψ(y)dy

)2

(Peebles, 1980, LSS of the Universe)
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Scaling ofw(θ)

w(θ) =
1

D∗

∫

+∞

0
dyy4ψ(y)2

∫

+∞

−∞
duξ((u2 +D2

∗
y2θ2)1/2)

(

∫

+∞

0
y2ψ(y)dy

)2

(Peebles, 1980, LSS of the Universe) So finally:

w(θ) =
1

D∗

W (D∗θ)
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Observations
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Observations
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Observed properties
Angular correlation function:

w(θ) ∝ θ−δ with δ = 0.77± 0.04
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Observed properties
Angular correlation function:

w(θ) ∝ θ−δ with δ = 0.77± 0.04

For powerlawξ(r) = (r/r0)
−γ:

γ = 1 + δ ∼ 1.77 and r0 ∼ 5h−1Mpc
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Observed properties
Angular correlation function:

w(θ) ∝ θ−δ with δ = 0.77± 0.04

For powerlawξ(r) = (r/r0)
−γ:

γ = 1 + δ ∼ 1.77 and r0 ∼ 5h−1Mpc

Three point correlation function:

ξ(3)(ra, rb, rc) = Q(ξ(ra)ξ(rb)+ξ(rb)ξ(rc)+ξ(rc)ξ(ra))

avec :
Q ∼ 1.27
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Dependence
Ex: luminosity:

dP = φ(M)dMdV

and:

dP12(r) = (φ(M1)φ(M2)+Γ(M1,M2, r))dM1dV1dM2dV2
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Dependence
Ex: luminosity:

dP = φ(M)dMdV

and:

dP12(r) = (φ(M1)φ(M2)+Γ(M1,M2, r))dM1dV1dM2dV2

Unbiased:

Γ(M1,M2, r) = φ(M1)φ(M2)ξ(r)

Simple bias:

ξ>L(r) = b(L)2ξ(r)
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Two point correlation function:
Definition
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Two point correlation function:
Definition
Need to know the average galaxy number density:

n(L) =

∫ +∞

L

φ(L)dL
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Two point correlation function:
Definition
Need to know the average galaxy number density:

n(L) =

∫ +∞

L

φ(L)dL

By definition:

dP (r) = dN(r) = ndV (1 + ξ(r))
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Two point correlation function:
Estimation
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Two point correlation function:
Estimation

From a sample, number of neighbours:

dNi(r) = ndVi(1 + ξ(r))
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Two point correlation function:
Estimation

From a sample, number of neighbours:

dNi(r) = ndVi(1 + ξ(r))

so an estimation ofξ is given by :

ξ(r) =

∑

i dNi(r)

n
∑

i dVi
− 1.
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Two point correlation function:
Estimation

From a sample, number of neighbours:

dNi(r) = ndVi(1 + ξ(r))

so an estimation ofξ is given by :

ξ(r) =

∑

i dNi(r)

n
∑

i dVi
− 1.=

Ndd(r)

n
∑

i dVi
− 1.

Ndd(r) is the number of pairs of galaxies with separa-

ration betweenr andr + dr.
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Estimators
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Estimators
Two (different) problems:
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- analytical
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Estimators
Two (different) problems:
- estimation ofn (-> φ(L))
- computation ofdVi
Volume elementdVi:

- analytical
- Monte Carlo integration:

dVi =
dNdr)i
np

(np being the density of random particules within the
survey limits)
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Estimators
Two (different) problems:
- estimation ofn (-> φ(L))
- computation ofdVi
Volume elementdVi:

- analytical
- Monte Carlo integration:

dVi =
dNdr)i
np

(np being the density of random particules within the
survey limits)so:

∑

dVi =
1

np
Ndr(r)
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Estimators

Galaxies and Clusters – 5th June 2014 – p.16/31



Estimators

ξ(r) =
np
n

Ndd(r)

Ndr(r)
− 1.
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Estimators

ξ(r) =
np
n

Ndd(r)

Ndr(r)
− 1.

for a fair sample:

< dVi)g >=< dVi)p >

and :

n =
Ng

V
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Estimators

ξ(r) =
np
n

Ndd(r)

Ndr(r)
− 1.

for a fair sample:

< dVi)g >=< dVi)p >

and :

n =
Ng

V
so:

ξ(r) =
(np
n

)2 Ndd(r)

Nrr(r)
− 1. =

(

Np

Ng

)2
Ndd(r)

Nrr(r)
− 1.
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Possible biases
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Possible biases
ξ(r) is estimated with an (systematic) uncertainty of
δn/n.
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Possible biases
ξ(r) is estimated with an (systematic) uncertainty of
δn/n.
If :

n =
Ng

V
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Possible biases
ξ(r) is estimated with an (systematic) uncertainty of
δn/n.
If :

n =
Ng

V

pair conservation implies:
∫

∼V

ξ(r)dV = 0

soξ is forced to become negative on some scale.
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Other estimators
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Other estimators
Hamilton (1993)

ξ(r) =
Ndd(r)Nrr(r)

N 2
dr(r)

− 1.

Galaxies and Clusters – 5th June 2014 – p.18/31



Other estimators
Hamilton (1993)

ξ(r) =
Ndd(r)Nrr(r)

N 2
dr(r)

− 1.

Landy and Szalay (1993):

ξ(r) = 1.+
(np
n

)2 Ndd(r)

Nrr(r)
− 2.

(

Np

Ng

)

Ndr(r)

Nrr(r)
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Other consideration

Galaxies and Clusters – 5th June 2014 – p.19/31



Other consideration
In practice one is dealing with flux limited surveys.
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Other consideration
In practice one is dealing with flux limited surveys.
In order to give equal statistical weight to equal
volumes, only galaxies withL > L0 are kept:

wi = w(z) =
n(> L0)

n(> L(z))
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Other consideration
In practice one is dealing with flux limited surveys.
In order to give equal statistical weight to equal
volumes, only galaxies withL > L0 are kept:

wi = w(z) =
n(> L0)

n(> L(z))

Increases the noise, improves the volume surveyed.
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Alternative: P (k)
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Alternative: P (k)
Troubles withξ(r):

- estimation goes asN 2
g .

- errors are not independent.
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Alternative: P (k)
Troubles withξ(r):

- estimation goes asN 2
g .

- errors are not independent.

Advantage ofP (k):

- estimation goes asNg.
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Alternative: P (k)
Troubles withξ(r):

- estimation goes asN 2
g .

- errors are not independent.

Advantage ofP (k):

- estimation goes asNg.

Troubles withP (k):
- boundaries correction is not trivial.
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4D Space...
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4D Space...

Di)obs ∝ Vi = H0Di + vicos(θ)
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4D Space...

Di)obs ∝ Vi = H0Di + vicos(θ)

Introducingrp, π

ξ(rp, π)
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4D Space...

Di)obs ∝ Vi = H0Di + vicos(θ)

Introducingrp, π

ξ(rp, π)

projected:

wp(rp) = 2

∫ +∞

0

ξ(rp, π)dπ
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Redshift Space Distorsion: 2dF
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Origin
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Origin

Pairwise velocity on small scales
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Origin

Pairwise velocity on small scales
Redshift distorsion proportional to

β = fδρ/ρ

with
f =

d lnD

d ln a
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Origin

Pairwise velocity on small scales
Redshift distorsion proportional to

β = fδρ/ρ

with
f =

d lnD

d ln a
≈ Ω0.55

M
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Observations: SDSS
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Observations: SDSS
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Observed properties
SDSS, all
For powerlawξ(r) ∝ (r/r0)

−γ:

γ ∼ 1.84 and r0 ∼ 5.59h−1Mpc

SDSS, LRG

r0 ∼ 10.h−1Mpc
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Observations SDSS, LRG
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Observations SDSS, LRG
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Observations SDSS: Boss II
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Observations: the Power Spec-
trum
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Homogeneity and the
Cosmological principle
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Homogeneity and the
Cosmological principle
usually:

lim
R=+∞

<

(

δρ

ρ

)2

(R)) >= 0

Galaxies and Clusters – 5th June 2014 – p.31/31



Homogeneity and the
Cosmological principle
usually:

lim
R=+∞

<

(

δρ

ρ

)2

(R)) >= 0

but what we are actually interessed in is:

lim
R=+∞

<
δh

h
(R) >= 0

(and remains small for allR).
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Homogeneity and the
Cosmological principle
usually:

lim
R=+∞

<

(

δρ

ρ

)2

(R)) >= 0

but what we are actually interessed in is:

lim
R=+∞

<
δh

h
(R) >= 0

(and remains small for allR).

That is:

GδM

R
∝
R3

√

ξ(R)

R
∝
R3−γ/2

R
= R2−γ/2

not really probe by galaxy surveys...
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