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Maps of the World
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o Lecture 1 Discovery of Acceleration
* Lecture 2 Dark Energy
e Lecture 3 Testing Dark Energy
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e Dodelson, Modern Cosmology

« Amendola & Tsujikawa, Dark Energy. Theory
and Observations, CUP

e Euclid Theory WG, Cosmology and Fundamental Physics
with the Euclid Satellite, arXiv 1206.1225
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Not covered here but you can talk to me about...

Modification of gravity (Horndeski, bimetric)

« CMB, B-mode polarization, Large scale structure
Statistical methods (Bayesian methods, robustness,
non gaussian Fisher matrices)

Euclid mission

Azores 2014 5



Where’s the matter?

e Baryons
 Dark Matter
e Dark Energy
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Today t, t =15 billion years
T=3K {1 meV)

Life on earth

Solar system

Quasars

Galaxy formation
Epoch of gravitatonal collapse

Recombination
R elic radiation decouples (CHR]

Matter demination
Onset of gravitational ins @ bility

NMucleosynthesis

Lightelements created - 0, He, Li t=1 second

T=1MeV

- B
Quark-hadron transition 10 s

Hadrons form - protons & neutrons

Dark matter freeze-out

Electroweak phase transition

Electromagnetic & weak nuclear
forces become differentated:
SU3xSU{2)xU(1] - SU(3]=U(1]

The Particle Desert
Axions, supersymmetry?

Grand unification transition
G- H->5U[3)=x5U{2)=xU(1]
Inflation, baryogenesis,
monopoles, cosmic strings, ete.?

The Planck epoch
The guantum gravity ba\rgHres



BBN predicted abundances

Fraction of
baryonic
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Light
Element
abundances
depend
mainly on
the density
of baryons
In the
Universe

baryon/photon ratio  °



BBN & the Baryon Densit

Light element abundances are concordant if the baryon
(neutron+proton) to photon ratio is about

N = Ny/Mipoton = 6 X 101° or Q,h?=0.02

(We can make the conversion from n to Q, h? since we know
the present density of CMB photons,

= 420 per cm3,

photon

very precisely from the CMB Temperature.)

Azores 2014 9



an
=
O
TE
o
d
qu’
D
>
-
AN




Maps of Planck
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Seeing the Sound Horizon

a If universe is closed, b If universe is flat, ¢ If universe is open,
“hot spots” appear “hot spots” appear “hot spots” appear
larger than actual size actual size smaller than actual size




Acoustic peaks probe space curvature

3000 [
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Multipole moment (f)

Q.. =1.02+0.02
WMAP+Planck
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A Flat World...
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So...where’s the matter?

So far we have measured two precious numbers

Qb= 0.04 Baryon density

Q =1 Total matter density

What makes up 96% of the stuff?

16



Dark matter

Dark halo

Typical rotation speed ~200 kmg%pe Sam 4visible disk size ~ 10 kpc
Mass ~ 101t M,




Dark matter

DISTRIBUTION OF DARK MATTER IN NGC 3198
<00 ¥ I I I

NGC 3108

Vur (km/s)

.u | | 1 I L1 11 l 11 1 1 | | l 1 1 Ll

0 10 20 30 40 50
Radius (kpce)
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Clusters of Galaxies: Size ~ Megaparsec (Mpc)
Mass ~ 10 M

sun

Largest gravitationally bound objects: galaxies, gas, dark matter

L] ' L]
. ) ’ -
- . - ° -
’ s :
L sl . ;
Galaxy Cluster Abell 2218 HST « WFPC2

NASA, A. Fruchter and the ERO Team (STScl) « STScl-PRC00-08



Where’s the matter?

Q_~0.3

Gaflaxy k_‘i;nem”ati_Cs "' g Cluster baryons
SF e R e Mgas = Mp @
~ Mror Mtor Om
* f, ~ 10-20%
« O, h2=0.02 (BBN/CMB)

« 0O _~03




Cosmology Executive Summary

Baryons 4%
Dark matter 26%
Massive neutrinos: 0.1%

Spatial curvature: very close to O

Something else: 70%




Back to the classics

22



Historical perspective, circa 350 b.c.e.

» Aristotle’s answer: quintessence

d that the sky falls on our head?
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Historical perspective, circa 1700 c.e.

» Gravity is always attractive: how to avoid that the stars fall on our
head?

» Newton’s answer: God’s initial conditions
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Historical perspective, circa 1900 c.e.

of repulsive gravity, by modifying the
equations of General Relativity.
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Origina GR equations

1

Run — ERg/Jn = 8pGTyn

geometry matter

8

gr 0 0 0
Tn - 0 -p O 0
%2 0 0 -p O

0 0 0 -p

IW ©



» These are the most general equations that are

covariant
covariantly conserved

second order 1n the metric

= » o=

reducing to Newton at low energy

27



Box on T,
Basic hydrodynamic equations for a non-relativistic fluid at rest:

Fo= 0 (1)

— = 0

where the energy density r = nmc? and the pressure is p; = nmv? . If we define the

matrix
Tun = diag(r,p,p,p)
then, more ssmply
o THN
dxH
The relativistic version isthe only tensor that dependsonr, p, ut = dxH/ds,gun
and reduces to this limit in the Minkowski space

#T4"= 0

THT = (r+ p)uHu” - pgh” (2)

Einstein’s equations are complete only when arelation between p and r isgiven: the
equation of state:
p= wr

28



I Neglecting instead the fourth condition, we can add a (small) term

_lgun and rewrite the equations as

1
Run — 5 8un— C8un=8pGTyn

I The new term is the cosmological constant.

(14] Das Gleichungssystem (14) grisul jedndldnnutdh‘;ﬂl--lt
dem Relativititspostulat » Erweiterung, welche durch

die Stelle der Feldgleichupg (13)
G a —-(1:.-{—9..1). (138

Auch diese Feldgleichung ist bei gmﬂga\d. kleinem A mit den sl:
Sonnensystem erlangten Erfahrungstatsachen jedenfalls vudnbu.m
befriedigt auch Erhaltungssitze des Impulses und der Energie,

man gehngtm(:;a) an Stelle von (13), wenn man statt des Skalars
3o Do swmanhan Tansora diesen Skalar, vermehrt um cinonnlvenelle

Einstein 1917
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The big idea of recent years has been to move the new term from right to left

1
an = *Rg’un = SPGTP’”"' Lgpn

2
thereby introducing a new form of matter
VAR
_ L
T,un(:)‘ % 8un
This matter has a fundamental property. Writing
/LO
n — n
Tw= gp W
or 8 9 8 9
57 0 0 03 3 g 0 0 0 3
0 -p O 0 _= 0 8p 0 0 -
0 0 -p 0 2 2 0 0 8p 0 =
00 0 =7 " 0 0 0 g
8p
one gets immediately
= ==
PO 8p’ -~ 8p

that is, the cosmological constant has negative pressure (if ./ > 0).
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| ntroducing the equation of state
p= wr
one has that the cosmologica constant has a negative eq. of state
w= -1
As acomparison, the eq. of state of matter (dust or cold dark matter) is
p= mv? 20! w=0

while for radiation
p=r/3! w=1/3

Azores 2014
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A repulsive gravity

What anegative pressure hasto dowith arepulsive gravity?

Homogeneous and isotropic Friedmann metric

v L 4

+ r’sinqdf 2+ r?dq?

2
1 — kr?

ds? = dt? — 22

For asingle perfect fluid, the ten Einstein equations reduce to two equations for the scale
factor and the energy density (here we put for simplicity k = 0 and always assume

30:1) '/’2

24 4 " _8p
H % ST (3)

2= - Plresp)= - Prae s @
From the second one it appears that if

w< —-1/3
then we get accelerated expansion. Therefore the cosmologica constant (or any fluid with
w < —1/3) accelerates the expansion / “repulsivegravity”. We cdl this hypotheti cal
fluid Dark Energy.

Azores 2014
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Consider now only the cosm. constant
a
a 8p |
H2 H - = = _
a 3773

from which q_

a= age 3
This accelerated expansion is a prototype of primordial inflation (de Sitter metric).

Generally speaking, there are at |east three components (plus curvature) so that dynamics
Is more complicate:

Y

Hza%b"g :Sp(

k
rgtrpm+r )-—
a

32
ri+3H(r;+ p;)=20

Ordinary matter (baryons plus dark matter) conserves energy during expansion, so that
we have four different behaviors

rg < a
Iy € 3_3
r oo K 2
R < a
k 32
r <= 30
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In general, therefore, we have

rad. ! matter ! curvature ! cosm.const.

Azores 2014
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Quantistic inter pretation

Think of afield, eg ascaar field, as aseries of classical oscillators. Then, every
oscillator contributes an energy due to the sum of its potential and kinetic
energy.

When at rest, every oscillator has only its potential energy of the lowest level,
that we can always put to zero.

Quantistically, however, the state of minimum is not at zero energy but rather
1
Ey= =h
07 5 w

Therefore, for afield, the total zero-point energy is

P
Eo= A thi
summing over all possible modes. Summing over k; = 2p/1 ; wherel ; = L/ n;
are all the wavelengths of the modes contained in abox of size [, we obtain

dn; = dk;1/2p modes in the range dk;, so that

Z

3
Ey = ;FL?’ "k

(2p)3

Wi
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where the oscillation frequency is in relation to the particle’s mass:
w2 = k2 + m?/R?

The total energy density integrating up to a cut-off frequency k5% isthen

. E k4
I vacuum = /"mﬁ = Flg?;\;

The energy diverges at the high frequencies (ultraviolet divergence). We must
suppose then that there is k.2, beyond which a new interaction modifies the
system.

The problem is, which k., ?. If we assume as limit the Planck energy
Eplanck = 10'° GeV

we get
I vacuum = 1092‘&;/Cm3

Now, the experimental limit is
r=3H%/8pG"' 10°g/cm?

then, the theoretical estimate is off by 120 orders of magnitude!
This fundamental theoretical problem is still open.

Azores 2014
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From observations to theory

What we really observe in cosmology is light from sour ces and from
backgrounds.

How do we connect these observables to cosmologica quantities like
rm,Ig k,a(t), Hy etc?

First, define

and note that
1=yt B+ By
so rewrite Friedman equation as (ag = 1)
H? = H (Bpa >+ ©-a+ ©a ?)
Then, generalize it to severd components:

H2 — H§(®m3_3(1+ Wm)+ ®:a—3(1+ W*)+ )
= HIA®a 31 = HIE(a)?

37



Cosmic Inventory

baryons 0.04 ~
CDM 0.26 =
radiation 0.0001 1/3
Massive neutrinos <0.05 ~
Cosm. const. 0.70 -1
curvature <0.03 -1/3
Other ? ? ?

38



First basic observable: Age of the Universe
I The age of the universe can be deduced from the Friedmann equation:

./dBOQ
i 5a’E(a)’
we get
v 2
dz
hogt = (YDEGE )
and finally ~
-1 21 dZ
t()—t1=HO

o (1+2)E(2)
Notice that the Hubble constant is
1

Hyl= = 9.76h™
0 100hkm/ sec/ Mpc 9.16h " Gyr

Forzy I + we get then the age of the universe.

I The effect of the cosmological constant , when =y, = oy + 2+ isfixed, isto
increase the cosmological age.

Azores 2014
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Azores 2014

Bext fir age of wmiverse: ¢, =145 % 1

(0.63/5) Gyr
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Second basic observable: Luminosity distance

From flat Friedmann’s metric
ds® = c?dt® - a°dr?

and integrating along the null geodesics, we get the proper distance which is what you

would measure with fixed rods

Zdt % da % 4z

at) ¢ 22 ¢ Ho
I generalized Hubble law: measuring distances means measuring cosmology .

If we compare the energy L emitted by a source at proper distance r with flux f arriving
at the observer, we define the luminosity distance d(z) such that

L L

apr2(1+ z)2  4pd?

The two extra factors of 1 + z take into account the loss of energy due to redshift and the
spread of energy due to the relative dilatation of the emission time versus observer’'s
time. We get

Z 2 dz

d(z)= r(1+ z)= cHy ' (1+ 2) .

E(z)

-1 _  300.000knvsec _ -1
where CHO = 100hkm/sec/ Mpc — 3000k Mpc.
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ds® =

where

Exact expression

dr? .
—dt® +a°(t) —+r°d 3 +r°sin® 9d g
1—Kkr
-1 zd 7' -1
rda = Hg 5[.-: A m] =Hg "5 [c(t0— ta)]

24~ Psin(|24 2R) (k=1
S(R) = R [k =0} (10)
|2k sinh(| 2" P R)  (k=-1)
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Remember our “reference” cosmology

E*(2) = Bm(l+ 2)° + = + Bx(1+ 2)°

The luminosity distance therefore depends upon the cosmological constant and, like for
the age, increases for . increasing. Therefore, alarger cosm. const. induces a smaller
luminosity of the standard candles.

Suppose we have a source of known absolute luminosity M= -2.5log L+ const . Then
one defines instead of the flux f an apparent magnitude m= -2.5logf + const as

m- M= 2b+ blogd(z;Epnm, X)

If M isthe same for every object, then the apparent magnitude gives directly d(z) and is
then possible to test for the presence of a cosmologica constant.

Azores 2014
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z=0.7

fy/
0.8
0.&
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0. 4
0.z
0.z 0.4 g.e 0.8 0.2 0.4 0.6 0.8
Oy O
z=10 Zz=1000
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0.2 0.4 0.6 0.8 0.z 0.4 0.6 0.8

Onr Opg

Curves of constant luminosity distance
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Standard candles
» Are there standard candles in nature ?

» The best such thing so far are supernovae Ia.

45
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Lighthouses in the dark
Supernovae la M—M =510(¢ dL + 295

L] "F - . o ™ [ L]
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ABSOLUTE MAGNITUDE

-17} t..;
e, Lo Phillips, Hamuy, et al.
S e W, 1993, 1995

SCALED MAGNITUDE
?
y

20 40 60
DAYS

-15
-20

=

I Then, we compare mgps(z) with

Miheor (2) = M+ 25+ log d(z; B, B, ..) 48



effective mg

ha
=

—
o]

Hubble diagram

Supemovs
Cosmolog
Project

Calan/Tololo
(Hamuy eral,

AJ. 1996)

Suparnova Cosmology Project

4 AManuliah, et al., Ap.d. (2010)




Bug or feature?

The SNIla are dimmer
than expected Ina
ordinary matter
universe!

BUT:

SupeIrmnova
Cosmology

n--;—_- gy e

- Dependence on
progenitors?

- Contamination?

- Environment? _

- Host galaxy? Ordinary matter

- Dust?

- Lensing?

- Unknowns?



Cosmological explanation
44

There is however a simple cosmological solution

| ocal , . () - f Global
Hubble "= H(z) Hubble
aw EW

If H(z) in the past is smaller (i.e. acceleration), then r(z) is larger:
larger distances (for a given redshift) make dimmer supernovae




I Remember our “reference” cosmology

E*(z)= Bm(l+ z)° + © + Bx(1+ 2)°

Fit with oo oy P

g AManuliah, et al, Ap.4 (2010)

m(z) = const +5logd, (2)

dL(z)z(1+z)j%

52
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From Dark Energy to Dark Force
4

The two problems of the cosmological constant:

1. The fine tuning problem

2. The coincidence problem



Why now?
4

The coincidence problem




LO%,}O(")
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Beyond the cosmological constant

I A cosm. constant, as we have seen, has a negative pressure and does not
fluctuate.

| But any fluid with pressure p = wr such that w < —1/3 hasin fact
similar properties.

I Thesimplest caseisascaar field f . Pressure and energy for a potentia
V(f) are

1. 1.
= 2f2- V(f = Zf2+ V(f

So that the conservation equation
r+3H(r+p)=20
isin fact the Klein Gordon equation

f+3Hf + V=0



The eq. of stateis

ve HIVO)
sF2+ V(F)

Kin. energy dominates | w! 1 stiff fluid
equipartition w! O dust
pot. energy dominaes | w! -1 || cosm. const.
negative kin. energy w< -1 phantom

| In generd, the equation of state will vary with time.
I Asafirst gpoproximation

w wogt+t wyz

w wo+ wy(a—1)



Scalar field Action
S :Iﬁd“x{ = R+L¢}

167G

L, = —% 0“'p 4, -V (¢)

Energy-momentum tensor

T = 2 §(V_gL¢) o ’ 1 x i3« ; -
uv o o ﬁ 5gﬂv - dl”l:.'l'_-ilz_.- iy — _'::g'lgrz.r EH d.;--,_ i::'rj.-i 0 T I- '.__l:::':I .

Klein-Gordon equation

¢, —V'(9)=0



| This matter component, denoted dark energy or quintessence, has
properties similar to the cosm. constant but

1. 1t fluctuates at large scale
2. 1s composed of particles of microscopica mass

m= V{i= HR=10"32eV

(the energy of aparticle with Compton wavelength is equa to the
horizon scae 3000 Mpc!)

3. gives an expansion different from the cosm. constant, and therefore in
principle obser vable with the same methods as above



The crucid point isthat a scalar field does not cluster because its
“sound speed”

isequd to the speed of light. That is, its own pressure resists
gravitationa collapse. Perturbing the Klein-Gordon equation in Fourier
space:

jo+2H] + 2k + 2UY =0

At small scales, kK dominates and the solution forj oscillates
acoustically around zero instead of growing. Therefore, ascaar field is
a good candidate for dark energy.



» Kepeal the SNIa fit with

EE{EJ = ﬂmil ‘|‘..E':|i3 +ﬂDE|:1 +E]3+3W‘DE

Ibl T | T T L] I T T T I T T T :

: 2008 3

-1 + A f

= £ .
-2 e =
= F World's SN la data 5

T (Kowalski et al.) .

ﬂ T L L L |. ] 1 '] L ] I L L L .

= L] T T '|' T L] L] I T T T I T T T :
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Linear perturbations
I Generd problem

1
d(Ryn - Eg)unR) = 8pd(Tun)
I Thisintroduces, at linear level, the following quantities:
dI’ 5 dp, dV, dgl_jn

I The genera perturbed metric can be written as

_ (0 1
8un = g;(m) + g;(m)

wherein all generality
v 5 \ 4
(1) = .2 y Wi
Bun =y of dy+ by



However, thisis far too general for what we need. First, as any tensor field, the
metric tensor can be written as a sum of terms that depend on purely scalar,
vector and tensor quantities. For instance

wEW+ w’ = —we+ w? (6)

and
hjj % hd;;/ 3 + h§+ h; + h’.jT (7)

Only the scalar quantities couple to dr so we consider only these now.

Then, we can choose any reference frame, i.e. we can change the coordinates to

yH = f(x") I 4 conditions on the metric coefficients. However, we would like

to keep the unperturbed part gf,??) asitis. Then we can subject the perturbed

part to 4 extra conditions: thisis called gauge choice.

One of the simplest choice is called /ongitudinal or Newtonian: we put
w; = h= 0 and obtain finally

v L 4
(1) _ 2 2 0

sun 0 2dd; (6)

Then we get the general perturbation equation. In particular, we also obtain
= @ if thefluid is a perfect fluid (no anisotropic stress).



Newtonian regime: small scales with respect to horizon H ™1, small
velocities, for a single component

i -
v, = HV,'_—cD
40 = -4pa’rd

Deriving thefirst we get for the density perturbations d = (r —r )/ r m
d+ 2Hd = 4pr yd %gsz

/' evolution of adensity contrast under a gravitationa potential
proportional to r p.

To solve the equation is sufficient to know the behavior of H(t) and
r (t). If thereis only matter, H? = Hza~3 and the solutions are

dea d«a¥?

Dark energychanges the growth of perturbations.

Azores 2014



Growth of perturbations

If there is a smooth component as the cosmologica constant (for which
d = 0) then dl it changesisthat H? = Hi®y,a” 3 where &, < 1:
weaker gravity forcing. If 5, [ const. then

d O a°

1 p
p o= (-1 1+24my)

If the cosmologica constant is the dominating component, the second
member vanishes (there is no potentid gradient) : d [ const.

A better way to study perturbation growth is to parametrize the growth
In this way
dlogd

0 n(a)9, g00.55
dloga (a) g




Time view
44

We know so little about the evolution of the universe!

radiation matter

Azores 2014



Gravity: what and what not

> Gravity IS universal, long range and unscreened

> IS the force responsible for the structure and
evolution of the Universe

> IS governed by the well-tested Einstein theory

> IS a force mediated by a spin-2 massless particle
universally coupled to all fields



IS that all?

> However, we only directly test gravity within the solar
system, at the present time, and with “baryons”

forbidden by
quantum mechanics

On Space and Time, Edited by Shahn Majid

...and we have yet to catch a graviton!


http://www.amazon.com/Space-Time-Shahn-Majid/dp/052188926X/ref=sr_1_1?ie=UTF8&s=books&qid=1272253967&sr=1-1

Testing Gravity

G_M N G_M(Hﬁe—”ﬁ)
r r

Schlamminger et al 2008
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A systematic approach to testing MG

Observations: Theory:

= |sotropy = Scalar field?
= |arge abundance = Qe =

=  Slow evolution B Weif = -1

= Weak clustering s s ~ ]

Azores 2014



The past ten years of DE research

J‘dX4\/§|:R+%¢,ﬂ¢”u +V (¢)+ Lmatter:|
JA=a | FOR 36,60 1V (@) Ly |

Jaxt = [f(¢)R+K( ¢ ¢”)+V(¢)+me}

JAXV7G| (85 0,60R+C, 88" + K 8,8 +V () + Ly |

Cosmological constant, Dark energy w=const, Dark energy w=w(z),quintessence, scalar-tensor model, coupled
quintessence, k-essence, f(R), Gauss-Bonnet, Galileons, KGB,



The Horndeski Lagrangian

The most general 4D scalar field theory with second order equation of motion
4
jdX \ —0 |:Z I—i + Lmatter:|

L = Ko, X)),
ﬁ;; — —G:;I_fl‘_'*. :‘f]:‘ﬂ.
Ls = Gi(d, X)R+ Gy x [(O2)* — (V. Vo) (VFVY )],

r 1 r P i
Lr = Gs(o, X) G (VIV D) — Ef_?.-._x [(O6¢)* — 3(08) (V. Vo) (VFVYd) + 2(VHVad) (V*Vad) (VIV ud)].

= First found by Horndeski in 1975

= rediscovered by Deffayet et al. in 2011

= no ghosts, no classical instabilities

= it modifies gravity!

= jtincludes f(R), Brans-Dicke, k-essence, Galileons, clustering DE etc etc
= |nvariant under conformal and disformal transformations



The next ten years of DE research

Combine observations of background, linear
and non-linear perturbations to reconstruct
as much as possible the Horndeski & Massive Gravity model

... or to rule them out!
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The Great Horndeski Hunt

Let us assume we have only

1) a perturbed FRW metric
2) pressureless matter

3) the Horndeski field



Standard rulers
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Standard rulers
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BAO ruler
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Charles L. Bennett
Nature 440, 1126-1131(27 April 2006)
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Background: SNIa, BAO, ..

Then we can measure H(z) and

1 : dz
D(z) = Hoﬁsmh(Ho./—Qkojﬁ)

and therefore we can reconstruct the
full FRW metric

s —dt—— D" (¢ rdy+af))

1= %0 p2
4

Azores 2014




Two free functions

The most general linear, scalar metric

ds® =a’[(1+2¥)dt* — (1+ 2®)(dx* + dy’ +dz*)]

= Poisson’s equation VY = 47Z'G,0m5

m

Y

= anisotropic stress 1=——

O

Azores 2014



Two free functions

The most general linear, scalar metric
ds® = a’[(1+ 2¥)dt* — (1+2®)(dx* +dy’ +dz?)]
= Poisson’s equation 72y = 4G Y(k, a)pm5 m

)
= anisotropic stress n(k,a)=——

Y

Azores 2014



Modified Gravity at the linear level

_ Y(k,a)=1
= standard gravity (k.a)
n(k,a)=1
Y(a)= G 2(F+F"Y) Boisseau et al. 2000
= scalar-tensor models FG,,, 2F +3F ? /Skcr?_ua:jnvta ?t gl0.024004
cnimd et al.
|2
L.A., Kunz &Sapone 2007
a)=1
(@) TFiF"
k2 k2
" f(R) G- ltam o m g Bean et al. 2006
Y(2) =25 asz . n@)=1+—8R_ Hu et al. 2006
@0 14+3m-, 1+2m Tsujikawa 2007
a'R a'R
1
Y(@)=1-— pB=1+2Hrw
| DGP ( ) 3ﬂ ﬂ ¢ 'DE

2
n(a)=1+3ﬂ_1

Lue et al. 2004;
Koyama et al. 2006

» massive bi-gravity

Y(a)=...
n@)=...

Azores 2014

see F. Koennig and L. A. 2014



Modified Gravity at the linear level

In the quasi-static limit, every Horndeski model is
characterized at linear scales
by the two functions

1+k*h
4
n(k,a)=h _
2 1_|_ (2 ,]5 k = wavenumber
1 ) h; = time-dependent
+K°n functions
Y(k,a)= >
£ 1+k’h,

De Felice et al. 2011; L.A. et al.PRD, arXiv:1210.0439, 2012
Azores 2014



Modified Gravity at the linear level

|F|:|E%:-} Ir—-' F-!:EE% {_'I.E_
T u 1y

B — H? 2wiwH — wiwy + 4wywsiiy — 2wiitie + pm)

T 2N M? Faurd ’
b — H® 2wiH?— wowaH + 2wy H + wauhy — wi (w2 + pm)
"= X M2 W, :
B — H? E!J'fHE — wauny H + 4wyt H + 2wy ® — wy (1 4 Prm)
g = 3

2X M2 T

wy =1+2(Gy —2XGyx + XGpe— dXHGy x) |
w2 =—2¢(XGax — Gag —2XGapx)
F2H (wy —4X (G x +2XGy xx —Gra— XGgax ) —
— 20 XH?(3Gg x + 2XGr xx) .
wa =3X (Kx +2XK xx — 2Gas — 2XGagx) + 184X H (2Gax + XGaxx)—
18¢H (Gap +5XGyex +2X Cagxx) —
18H2 (1 + G4 — TXGex — 16X%Gaxx — X Caxxx)—
18X H? (66,4 + 9N Gy px + 2X G pxx )4

F66XH®(15Gsx +13XGrxx +2X Crxxx).

Wy

14+ 2(Gs— XGx s — XGCuxd) .

De Felice et al. 2011; L.A. et al.,PRD, arXiv:1210.0439, 2012
Azores 2014



Yukawa Potential

1+k*h
k,a)=h A
n(k.2) =", 1+k2h5]
2 Momentum space
1+
Y (k,a)= >
(k,a)=h, 1+k2h3j

VW = 4nG Y (k,a)p,,5

Y=- G—Mh(l hhh r/\f)_ (1 +Qe ™)  Real space

r 5

De Felice et al. 2011; L.A. et al.PRD, arXiv:1210.0439, 2012

Azores 2014



Quasi-static approximation

¢.9"-V'=0p

kU aH? P> (09)e”
~0p~k*6¢~V" 59 = Q(3p)
k8¢ + m”d¢ = —Q(5p)

From a wave equation:

A

E;p = lei*_ﬂ._;{:f.':J+B;;¢ﬁ+Dlﬁé:m+D.-nil+ﬂf—zi
i1

k2 L2 2N k2 k2
+(Dr—+Ds ) &+ (Do — M? ) 66+ D.[]F+Dll)@+ﬂlzgx=f1-

12

% o

To a “Poisson” equation:

J[l-.'_:' Ii_'l.'_-' . _ |i-':'_
BT—_:,‘-I* — (.D!I_i.__:l — _"l;r_) o + _4{5—_';[: ~ 1,

a s (12
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Reconstruction of the metric
44

ds® = a’[(1+ 2¥)dt* — (1+ 2d)(dx* + dy* + dz°)]

massive particles respond to ¥

5"+ 1+ HF)&' =V*¥

o)
5%
P
massless particles respond to ®-'¥ B ) : . : '
..-‘.Q _.! .".
- VLT
0= [V (¥ — D)2 N

Azores 2014



Peculiar velocities
—

Real space Redshift space

Azores 2014
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Peculiar velocities

P, =+ pu°)°P,

redshift distortion parameter

/B — Kaiser 1987

Azores 2014



Reality check
IR

5: p(x)_po
Lo B

-

Density fluctuation in spage ~ —— <5k2> =P(k, z)

T

g s B , Matter power spectrum P e (K, 2)

-
e A

Al -
- .’

| _, Gé.laxy poWef spectrum . b2 (k, Z) Pmatter (k, Z)

i Galaxy'power spectrum
~ « inredshift space

U+ B(k,2)c05? 0)?b7 (K, 2)P,yy (K, 2)

Azores 2014




Deconstructing the galaxy power spectrum

Redshift distortion

Galaxy
clustering

Line of sight
angle

Sy (.2, 1) = Chos(1+ L %55, o (k)
(r=5)

Present
mass power
spectrum

normalization

Azores 2014



Three linear observables: A R, L

clustering
p=0
Amplitude
pA gal (k,z,0) =Gboy mO(k) =
p=1
Redshift distortion) Oy (K, 2,1) =Gog T o, ,(K) =R
R
lensing

@kz Iens k (LP CD)-—%ZGQ Og mO(k)_

2=Y(1+n)

Azores 2014



The only model-independent ratios

Redshift distortion/Amplitude P = E — i
A Db
Lensing/Redshift distortion P, = L _QuY@+n)
R f
Redshift distortion rate P, = R — f 4+ f
R f
Expansion rate E — H
H,

How to combine them to test the theory?

Azores 2014



Summarizing....

Matter conservation equation
Independent of gravity theory

" #HI~ I 29
5”1 T (]' Ll g,}ém = —k"V

Observables




The anisotropic stress is directly observable

A unique combination of model independent observables

3P,(1+ 2)°
2E?* (P, + 2+EE)

Observables @

Azores 2014

—1=1p



Testing the entire Horndeski Lagrangian

A unique combination of model independent observables

3P2(1+z) | _1 n—=h 1+kh
2E2(P3+2+

Observables

LA M. Motta, |. Sawicki,
Azores 2014 M. Kunz, I. Saltas, 1210.0439
1305.0008



Horndeski Lagrangian: not too big to fail

(REa*)'

Z,K) =
9(z,k) LEa?

20,9 _3(g,kk)2 =0

If this relation is falsified, the Horndeski theory is rejected™

L.A., M. Motta, |. Sawicki,
M. Kunz, I. Saltas, 1210.0439

Azores 2014



Euclid in a nutshell -

Simultaneous (i) visible imaging (ii) NIR photometry (iii) NIR spectroscopy
15,000 square degrees

70 million redshifts, 2 billion images
Median redshiftz =1

PSF FWHM ~0.18

>1000 peoples, >10 countries

Euclid
satellite

arXiv Red Book 1110.3193 arXiv Theory Review 1206.1225



Euclid forecasts...

Combining galaxy clustering, weak lensing and SN....

Weak Lensing (ng = 6)
— T T T T T Tt T T T T T T T T T T

: \\\ = T : 0.45:_ T T
0-45/ 0.40}
I | 0.35F
e 0.40+ . b
I ] 0.30
0_35; i 0.25F
0.20F

0.0 0.5 1.0 1.5 2.0
Z Z

sof S . .
M;_ GO'8 f5m,0(k) = R
E; 2.05—
5 i 100k SN (LSST) —ZG£2m085m0(k) =L
1.5} ]
ol ] Azores 2014
0.0 05 10 L5 20



A cosmological exclusion plot

2
Model 4: n has the Horndeski form n = h 1+K h4
Error on h2, (h4-h5) in h/Mpc 2l 14 k2h5
—r/A
n=——2(1+Qe"™)
r
1.00 b Potential |y
o 050F excluded by Euclid
| AlMpe/h]
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The fourfold way to gravity screening

G =G(L+ae™)

depend on time
depend on space
m(” = depend on local density

depend on species

Azores 2014



Screening mechanisms

The field ¢ obeys a
G =G(@l+ae ™) Poisson equation
m = m(¢) Vig+m’p=a"?po

So the solution is something like

¢ = d(p0) = ¢(local density)

> G =G(L+ae ™)

A density-dependent range!

Azores 2014 Khoury Weltman 2003




Screening mechanisms

(mass increases with the local density)

range =m™"

Small density, small mass

Long range

Azores 2014



Screening mechanisms

(mass increases with the local density)

1
range =m Large density, large mass

Short range

Azores 2014



Under the carpet.

Problem of non-linearity:
screening effects mix linear and non-linear scales

same density contrast

different physics
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