

Photometric calibration of the wide field imager MegaCam with the demonstrator SNDice

Francesca Villa

villa@lpnhe.in2p3.fr

Azores School on Observational Cosmology September 2011

Outline

Cosmology with Type Ia Supernovae (SNe Ia)

Recent SNe la results:
 Supernovae Legacy Survey (SNLS) 3 years
 data release

The SNDice Project

Data Analysis

Outlook

Supernovae Legacy Survey (SNLS)

 Photometric survey @ CFHT Hawaii (40 nights/year from 2003 to 2008)
 Four fields ~ 1 deg²
 g, r, i, z bands
 MegaCam imager

 Spectroscopic survey for identification of SNe Ia and redshift (VLT, Keck, Gemini)

<u>450 confirmed SNe la</u>

0.15 < z < 1.1

Supernovae Legacy Survey (SNLS)

Why is it a Difficult Business?

COMPARISON NEAR TO FAR OBJECTS: 1. At the same phase after explosion 2. In the same rest-frame passbands

WE NEED:

 SN Ia spectral model at different phases
 Flux
 intercalibration of the imager passbands

Recent results: SNLS3 (1)

Recent results: SNLS3 (2)

 $w = -0.91^{+0.16}_{-0.20} (\text{stat})^{+0.07}_{-0.14} (\text{sys})$

Table 7: Identified systematic uncertainties				
Description	Ω_m	w	Rel. Area ^a	
Stat only	$0.19\substack{+0.08 \\ -0.10}$	$-0.90\substack{+0.16\\-0.20}$	1	
All systematics	0.18 ± 0.10	$-0.91\substack{+0.17\\-0.24}$	1.85	
Calibration	$0.191\substack{+0.095\\-0.104}$	$-0.92\substack{+0.17\\-0.23}$	1.79	
SN model	$0.195\substack{+0.086\\-0.101}$	$-0.90\substack{+0.16\\-0.20}$	1.02	
Peculiar velocities	$0.197\substack{+0.084\\-0.100}$	$-0.91\substack{+0.16\\-0.20}$	1.03	
Malmquist bias	$0.198\substack{+0.084\\-0.100}$	$-0.91\substack{+0.16\\-0.20}$	1.07	
non-Ia contamination	$0.19\substack{+0.08 \\ -0.10}$	$-0.90\substack{+0.16\\-0.20}$	1	
MW extinction correction	$0.196\substack{+0.084\\-0.100}$	$-0.90\substack{+0.16\\-0.20}$	1.05	
SN evolution	$0.185\substack{+0.088\\-0.099}$	$-0.88\substack{+0.15\\-0.20}$	1.02	
Host relation	$0.198\substack{+0.085\\-0.102}$	$-0.91\substack{+0.16\\-0.21}$	1.08	

(Conley et al.,2011)

Ellipse relative areas: ✓ Stat only= 1 ✓ Syst tot = 1.85 ✓ Calibration = 1.79

Recent results: SNLS3 (2)

(Conley et al.,2011)

Table 7: Identified systematic uncertainties				
Description	Ω_m	w	Rel. Area ^a	
Stat only	$0.19\substack{+0.08 \\ -0.10}$	$-0.90\substack{+0.16\\-0.20}$	1	
All systematics	0.18 ± 0.10	$-0.91\substack{+0.17\\-0.24}$	1.85	
Calibration	$0.191\substack{+0.095\\-0.104}$	$-0.92\substack{+0.17\\-0.23}$	1.79	
SN model	$0.195\substack{+0.086\\-0.101}$	$-0.90\substack{+0.16\\-0.20}$	1.02	
Peculiar velocities	$0.197\substack{+0.084\\-0.100}$	$-0.91\substack{+0.16\\-0.20}$	1.03	
Malmquist bias	$0.198\substack{+0.084\\-0.100}$	$-0.91\substack{+0.16\\-0.20}$	1.07	
non-Ia contamination	$0.19\substack{+0.08 \\ -0.10}$	$-0.90\substack{+0.16\\-0.20}$	1	
MW extinction correction	$0.196\substack{+0.084\\-0.100}$	$-0.90\substack{+0.16\\-0.20}$	1.05	
SN evolution	$0.185\substack{+0.088\\-0.099}$	$-0.88\substack{+0.15\\-0.20}$	1.02	
Host relation	$0.198\substack{+0.085\\-0.102}$	$-0.91\substack{+0.16\\-0.21}$	1.08	

(Conley et al.,2011)

$$w = -0.91^{+0.16}_{-0.20} (\text{stat})^{+0.07}_{-0.14} (\text{sys})$$

Ellipse relative areas:
✓ Stat only= 1
✓ Syst tot = 1.85
✓ Calibration = 1.79

How can we improve SNLS measurements?

Virect observation of primary standards with MegaCam

√New data set of low-z SNe Ia observed in the same filter system

Project of instrumental calibration with calibrated light sources: LASERS (Stubb et al., 2006), <u>LEDs (SNDice @ LPNHE)</u>

The SNDice Project

Designed and built @ LPNHE

✓ 24 LEDs: narrow spectra from IR to UV

 ✓ Absolute reference for flux measurement (LED fluxes absolutely calibrated using a photodiode – precision 10⁻⁴)

Optimized to study MegaCam imager

SNDice Applications

Study of the MegaCam readout electronics:
 stability, determination of amplifier gains

Monitoring of camera performances:
 CCD quantum efficiency, mirror reflectivity, optical transmission

Study of the uniformity of the imager photometric response:

flat field optimisation

Intercalibration of passbands

Test bench activities @ LPNHE

CALIBRATION AND STUDY OF THE STABILITY OF THE LIGHT SOURCE ITSELF

✓ Mapping of each LED
 beam (uniform @ 10⁻⁴ level)

Study of the emission stability vs time

Variation of each LED
 spectrum with temperature

(Juramy, et al. 2008) Francesca Villa Azores School on Observational Cosmology – Sept. 2011

Installation @ CFHT

Configuration SNDice-MegaCam in the CFHT enclosure

36 CCDs 2k x 4k, 72 amp.

✓ Field 1 deg²
 ✓ Angular res. 1pix = 0.187"
 ✓ Wide Field Corrector 4 lens

SNDice Exposure

Instrument Model

Gains and Quantum Efficiencies

SNDice Exposure (2)

Data Analysis

Simulation of SNDice-MegaCam system

Simulation of focal plane illumination

Stars seen by MegaCam

<u>Goal:</u> TO GET RID OF INTERNAL REFLECTIONS FROM OPTICS

Simulation of focal plane illumination

Direct light contribution

<u>Goal:</u> TO GET RID OF INTERNAL REFLECTIONS FROM OPTICS

Electronic Gain Determination

Study of Passbands

Ongoing analysis

 Determination of the absolute passband transmission (A. Guyonnet's Thesis)

Optimization of the new flat-fielding technique

 Test bench acquisition at low temperatures
 A new prototype SKYDice for the SkyMapper Telescope (Australia)

Thanks for your attention!