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Separability = Tractability        
   Basis = Good 18

Figure 8: Three-dimensional orthonormal polynomials Rn on the tetrahedral domain (40). Taken from top left (and moving
across and then down) these are R0, R1, R2, R3, R4, and R41 (bottom right).
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APPLICATIONS
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The advantage of the modal approach is in the power of an 
orthonormal basis.  

This allows us to do much more than estimation

•Simulations
•Inverse covariance
•Reconstruction
•Contaminants
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SIMULATION
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This method can also be used to simulate maps with a given 
bispectrum and trispectrum
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Note: If you want to use both simultaneously you need to calculate the trispectrum minus the spurious 
trispectrum generated from the bispectrum squared
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SIMULATION
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Neither part interferes with the other. Using the expansion 
the nonGaussian contributions can be easily calculated

aBlm =
�

n

ᾱQ
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Figure 14: Simulated maps for nonGaussian models using the late-time map-making method (124); this only includes the aNG
lm

contribution. The upper panel shows a non-Gaussian CMB map from cosmic strings obtained using the analytic expression
for the string bispectrum (29). The lower panel shows a simulated nonGaussian map for an equilateral model. When added to
its Gaussian counterpart map from aG

lm at an amplitude fNL = 600, this equilateral map was used for the bispectrum recovery
illustrated in figs. 16, ??. Note the red colour cast from negative fNL and blue from positive.

already well-studied in the literature (see e.g. [3, 25, 31]), which enables a useful comparison between the

outcome of our numerical pipelines and previously published results for the equilateral shape. Moreover,

the equilateral case does not require sophisticated noise analysis, unlike the local model. However, we will

briefly consider other non-separable models outlined earlier in the introduction, such as the related DBI

model and the cosmic string bispectrum. We note that from the point of view of the eigenmode decomposi-

tion, the formal separability of the equilateral shape is irrelevant; it does not cause early termination of the

expansion series which is nearly identical to the non-separable DBI model (see fig. 10). Having established

35

Figure 14: Simulated maps for nonGaussian models using the late-time map-making method (124); this only includes the aNG
lm

contribution. The upper panel shows a non-Gaussian CMB map from cosmic strings obtained using the analytic expression
for the string bispectrum (29). The lower panel shows a simulated nonGaussian map for an equilateral model. When added to
its Gaussian counterpart map from aG

lm at an amplitude fNL = 600, this equilateral map was used for the bispectrum recovery
illustrated in figs. 16, ??. Note the red colour cast from negative fNL and blue from positive.

already well-studied in the literature (see e.g. [3, 25, 31]), which enables a useful comparison between the

outcome of our numerical pipelines and previously published results for the equilateral shape. Moreover,

the equilateral case does not require sophisticated noise analysis, unlike the local model. However, we will

briefly consider other non-separable models outlined earlier in the introduction, such as the related DBI

model and the cosmic string bispectrum. We note that from the point of view of the eigenmode decomposi-

tion, the formal separability of the equilateral shape is irrelevant; it does not cause early termination of the

expansion series which is nearly identical to the non-separable DBI model (see fig. 10). Having established

Monday, 5 September 2011



SIMULATION
37

!

"!!

#!!

$!!

%!!

&!!

'!!

()*
+ ,
-

.

.

/0123041)5
-)67 8127

!""

#""

"

#""

!""

$""

%""

&""

'""

(""

)""

*+,

- .
/

0

0

12345263+7
/+89 :349

Figure 15: Recovery of fNL from 50 simulated maps of the equilateral model, showing a direct map-by-map comparison between
the primordial estimator (83) (blue) and the CMB estimator (95) (red). Ideal map recovery is shown in the top panel, while
recovery for WMAP-realistic maps is shown below with beam, inhomogeneous noise and mask included (BNM). Both methods
recovered the input fNL = 300 with a variance of approximately ∆fNL = 105 (clean) and 150 (BNM). Note the overall
consistency of the two independent estimators with a significantly lower variance evident between the methods ∆fNL = 30
(clean) and ∆fNL = 103 (BNM).

in several previous studies to work well for equilateral shapes. Moreover, for our purposes the approximate

nearly-optimal estimator is all we need since it contains all the dependence on the theoretical ansatz and

thus all the dependence on our eigenmode expansion, which is the primary concern for this initial validation

process.

We compared the fNL recovered from each map using the two methods, as well as the final averages

and variances. The variances were compared to expectations from Fisher matrix forecasts obtained both

from our eigenmode expansion and from the ‘standard’ αl, βl, γl, δl decompostion of the equilateral

shape used to date in other nonGaussian analysis. In all cases the results were internally consistent and in

agreement with Fisher matrix expectations, as summarized in table (I). This led us to conclude that the

eignemode expansion method appears to be a reliable way to produce non-Gaussian CMB simulations and

fNL estimators for primordial models, whether separable or otherwise.

Having verified the two estimator’s performance on simulated equilateral maps we then applied both of

them to the WMAP5 data, coadding the V and W channels as discussed above. The primordial estimator

obtained the result −174 < f equil
NL < 434, which is consistent with the existing constraints obtained using

standard separable primordial approach (given the caveat that a number of these results have now been

To test the accuracy of 
the method we 

simulated maps using 
both the primordial and 
CMB decompositions 
and then applied  both 

the primordial and CMB 
estimators to both sets 
to produce consistent 

results

36

the reliability of the eigenmode expansion method here, in a forthcoming publication [29] we will apply it
to the study of families of non-separable shapes using WMAP5 data.

A. Simulated observational maps

Using the algorithm described in section V, we generated a set of 100 equilateral CMB maps with both the
primordial and late-time decomposition pipelines. We worked at roughly WMAP resolution with lmax = 500
and HEALpix nside = 512, corresponding to a pixel number Npix ≈ 106. We then applied both our
primordial and late-time estimators to both our primordial and late-time sets of simulated maps in all
combinations. We found that in all cases the map-making methods gave consistent results, producing
simulated maps from which the correct fNL could be reliably recovered with the correct variance. Results
for both primordial and late-time estimators on the same set of 50 equilateral maps (with and without the
mask and inhomogeneous noise) with fNL = 300 can be seen in fig. 15. We observe that the two estimators
produce consistent results on the same maps. Of course, there is some small variation between the results as
the two estimators can be regarded to be independent but this proved always to be well within the variance.

In addition, we extracted the equilateral configurations Blll of the bispectrum from the maps and com-
pared the average over all the simulations to the semi-analytic expectations obtained from the standard
decomposition of the equilateral shape in terms of αl(x), βl(x), γl(x), δl(x) (refer to eqns (21) and (24)).
The recovered equilateral bispectrum values were in very good agreement between the semi-analytic predic-
tion from the “standard” α,β,γ,δ decomposition and the simulations, based on our eigenmode expansion,
thus showing consistency with previous approaches.

Finally, we reiterate that this general approach to map simulation was highly efficient, producing Planck
resolution maps for the equilateral model on short timescales. This made estimator validation through
Monte Carlo simulatoins easily achievable with only modest resources. For other well-behaved bispectra,
such as the cosmic string model, the general method proved robust. Examples of non-separable maps
already have been discussed and shown in fig. 14.

B. Primordial and late-time fNL estimators

Choosing an input value fNL = 300 for the sets of equilateral map simulations described above, we
compared results from both the primordial and late-time bispectrum estimators. In order to verify the
consistency of the two methods we selected the late-time map sets and applied both estimators to it. The
tests were performed starting from a noiseless full-sky map and then more realistic simulations were used,
including partial sky-coverage and an anisotropic noise component. The rms noise was obtained by coadding
WMAP V and W channel using the same scheme as the one adopted for nonGaussian analysis by the WMAP
team [3]. The sky-coverage was done using the KQ75 mask, also adopted by the WMAP5 team for their
fNL analysis. Only the approximate form (??) of the estimator is used, and not the full form (33) including
the full covariance matrix and a linear term. Note however that this approximation has been demonstrated

Ideal simulations WMAP5 simulations
Average St. Dev. Average St. Dev.

Primordial estimator 292.9 104.8 297.7 152.1

Late-time estimator 300.6 104.9 278.7 160

Internal st. dev. 38.5 102.6

Table I: Results obtained from the application of the primordial and late-time estimators as described in the text. In the first
two columns, labeled by ‘Ideal simulations’, we consider ideal full-sky noiseless measurements, while in the last two columns,
labeled by ‘WMAP5 simulations’ we include noise and sky coverage in order to simulate a WMAP5-realistic experiment (see
text for further explanation). We apply both estimators to a single set of maps, in this case created using the late-time mode
expansion approach. In the last row, we calculate the difference between the fNL recovered by the two techniques, map by map
for 100 maps, and report the final internal standard deviation between the methods.
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INVERSE COVARIANCE
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α = RA

In general it is very hard to calculate the inverse covariance 
matrix. If we perform the same modal decomposition on the 

covariance

β = RB −→ PB = RTβ

ζ = RCRT

E ≡ αT ζ−1β

αT ζ−1α

=
(RA)TRC−1RTRB
RATRC−1RTRA

=
ATPC−1PB
ATPC−1PA

Monday, 5 September 2011



INVERSE COVARIANCE
Hang on, we defined                    but used

While R is rectangular, it does have a right inverse,              ,
and as it’s orthonormal the inverse is just its transpose

and      is an arbitrary matrix which is perpendicular to the 
subspace and can be ignored

Z⊥

ζ = RCRT

ζ−1 = RC−1RT

ζ−1 =
�
RCRT

�−1
= R

�
C−1 + Z⊥

�
RT

RRT = I
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INVERSE COVARIANCE
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We can understand the effect of the projection by 
considering

A =

�
A�
0

�
B =

�
B�
B⊥

�
C−1 =

�
C−1
� C−1

×

C−1T
× C−1

⊥

�

X� ≡ PX
X⊥ ≡ (I − P)X
M� ≡ PMP
M⊥ ≡ (I − P)M(I − P)

M× ≡ PM(I − P)
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INVERSE COVARIANCE
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We can understand the effect of the projection by 
considering

Ē =
A�

�
C−1
� B� + C−1

× B⊥

�

AT
� C

−1
� A�

E =
A�C−1

� B�

AT
� C

−1
� A�

The difference is the projection of contamination from the 
orthogonal space into the subspace
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INVERSE COVARIANCE
If we remember our discussion of the linear term we proved 

that

ζ =
1

6
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INVERSE COVARIANCE

Also as all covariance matrices are symmetric positive 
definite they have a Cholesky decomposition

ζ = λ̃ λ̃T

α� = λ̃−1α β� = λ̃−1β

E =
α�Tβ�

α�Tα� , ζ � = I

And we can absorb the covariance into our modes. This 
amounts to a re-orthogonalisation to an uncorrelated 

orthonormal basis
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RECONSTRUCTION
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There is no “standard model” of non-Gaussianity so our goal 
should not be to obtain the tightest error bars on       but to 

decide which       we should be trying to constrain.

7

FIG. 3 Shape functions for the scale-invariant equilateral (left) and local (right) models, S (k1, k2, k3) = S (α̃, β̃) on transverse slices

with 2k̃ = k1 + k2 + k3 = const.

These considerations lead naturally to the definition of the primordial shape function (Babich et al., 2004)

S (k1, k2, k3) ≡ 1

N
(k1k2k3)

2BΦ(k1, k2, k3) , (II.12)

where N is a normalization factor which is often chosen such that S is unity for the equal ki case, that is, S (k, k, k) = 1

(we shall discuss alternatives to this rather arbitrary convention later). For example, the canonical ‘local’ model (II.9)

has the shape

S local
(k1, k2, k3) =

1

3




k2

1

k2k3

+
k2

2

k1k3

+
k2

3

k1k2


 . (II.13)

Thus it is usual to describe the primordial bispectrum in terms of an overall amplitude fNL and a transverse two-

dimensional shape S (k1, k2, k3) = S (α̃, β̃), which incorporates any distinctive momentum dependence. Of course, if

there is a non-trivial scale dependence, then the full three-dimensional dependence of S (k1, k2, k3) on the ki must be

retained.

There are other physically well-motivated shapes in the literature which have also been extensively studied. The

simplest shape is the constant model

S const
(k1, k2, k3) = 1 , (II.14)

which, like the local model, has a large-angle analytic solution for the CMB bispectrum (Fergusson & Shellard, 2009).

The local model tends to be the benchmark against which all other models are compared and normalized, but for

practical purposes the constant model is much more useful, given its regularity at both late and early times. The

equilateral shape is another important case with (Babich et al., 2004)

S equil
(k1, k2, k3) =

(k1 + k2 − k3)(k2 + k3 − k1)(k3 + k1 − k2)

k1k2k3

. (II.15)

While not derived directly from a physical model, it has been chosen phenomenologically as a separable ansatz for

higher derivative models (Creminelli, 2003) and DBI inflation (Alishahiha et al., 2004). The equilateral shape is

contrasted with the local model in fig. 3.

Another important early result was the primordial bispectrum shape for single-field slow roll inflation derived by

Acquaviva et al. (2003); Maldacena (2003)

S Mald
(k1, k2, k3) ∝ (3� − 2η)
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1

k2k3

+
k2

2

k1k3

+
k2

3

k1k2


 + �


(k1k2

2
+ 5 perm.) + 4

k2

1
k2

2
+ k2

2
k2

3
+ k2

3
k2

1

k1k2k3




� (6� − 2η)S local
(k1, k2, k3) +

5

3
� S equil

(k1, k2, k3) , (II.16)
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FIG. 6 Shape functions for the nearly scale-invariant ‘warm’ and ‘flat’ NG models, S (k1, k2, k3) = S (α̃, β̃) on transverse slices with
2k̃ = k1 + k2 + k3 = const. These distinct and independent shapes prove to be largely uncorrelated with each other and the local and
equilateral models illustrated in fig. Ḟrom Fergusson & Shellard (2009).

In using the shape correlator for the local model, we must introduce a small-wavenumber cut-off, taken to be a
kmin = 2/tau0, otherwise the shape correlator C̄(S local, S local) becomes infinite. This logarithmic divergence does not
afflict the CMB bispectrum bl1l2l3 because we do not consider contributions below the quadrupole l = 2 (a threshold
which is approximated by the primordial cut-off). The local shape is modestly correlated at the 40-55% level with
the equilateral shapes, mainly through the constant term in the expansion (II.26). As can be seen in table II this
somewhat underestimates the CMB correlator. Nevertheless, a NG signal of only modest significance should be able
to distinguish between these independent models.

Finally, warm inflation scenarios, i.e. models in which dissipative effects play a dynamical role, are also predicted
to produce significant non-Gaussianity (Gangui et al., 1994; Gupta et al., 2002). Contributions are again dominated
by squeezed configurations but with a different more complex shape possessing a sign flip as the corner is approached
(see fig. 6). This makes the warm S warm and local S local shapes essentially orthogonal with only a 33% correlation.
Again, in using the shape correlator, we need to introduce the same phenomenological cut-off kmin as for the local
model, but we also note the more serious concern which is the apparent breakdown of the approximations used to
calculate the warm inflation shape near the corners and edges.

4. Flattened triangles – edge-weighted models

It is possible to consider inflationary vacuum states which are more general than the Bunch-Davies vacuum, such as
an excited Gaussian (and Hadamard) state (Holman & Tolley, 2008, see also discussions in Chen et al. 2007; Meerburg
et al. 2009). Observations of non-Gaussianity in this case might provide insight into trans-Planckian physics. The
proposed shape for the bispectrum is

S flat(k1, k2, k3) ∝ 6




k2
1 + k2

2 − k2
3

k2k3
+ 2 perms


 +

2(k2
1 + k2

2 + k2
3)s

(k1 + k2 − k3)2(k2 + k3 − k1)2(k3 + k1 − k2)2 . (II.28)

The bispectrum contribution from early times is dominated by flattened triangles, with e.g. k3 ≈ k1+k2, and for a small
sound speed cs � 1 can be large. Unfortunately, as the divergent analytic approximation breaks down at the boundary
of the allowed tetrahedron, some form of cut-off must be imposed, as shown for the smoothed shape in fig. 6 where
an edge truncation has been imposed together with a Gaussian filter. The lack of compelling physical motivation and
ill-defined asymptotics make predictions for this model uncertain.

13

FIG. 6 Shape functions for the nearly scale-invariant ‘warm’ and ‘flat’ NG models, S (k1, k2, k3) = S (α̃, β̃) on transverse slices with
2k̃ = k1 + k2 + k3 = const. These distinct and independent shapes prove to be largely uncorrelated with each other and the local and
equilateral models illustrated in fig. Ḟrom Fergusson & Shellard (2009).
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Figure 5: The shape function of models in the equilateral class. Clockwise from top left we have the equilateral, DBI, single
and ghost models. All four of these models have the majority of their signal concentrated in the equilateral limit corresponding
to the centre of the triangle. Despite significant variations in the flattened limit, particularly around the edges of the triangle,
all are strongly correlated by 96% or greater to the equilateral model

which naturally leads to a non-zero bispectrum. The shape function for this model is of the form,

Sghost(k1, k2, k3) ∝ 2
1

K111
Re

[
∫ 0

−∞

dη

η
F ∗(η)F ∗

(

k2

k1
η

)

F ′∗

(

k3

k1
η

)

k3k̃32

]

, (69)
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General non-Gaussian shapes arising from modifications to single field inflation have been extensively reviewed in
ref. [20]. Using a Lagrangian that was an arbitrary function of the field and its first derivative, they were able to
identify six distinct shapes describing the possible non-Gaussian contributions. Half of these had negligible amplitude
being of the order of slow-roll parameters (two already given in (41)). Of the remaining three shapes [20] (see also
[23]), one was believed to be subdominant, the second recovered the DBI shape (68), leaving a third distinct single
field shape of the form,

Ssingle(k1, k2, k3) ∝
K111

K3
. (71)

The sub-dominant term is a complex combination of special functions (somewhat like ghost inflation (69)) with inde-
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are unsuitable for a detailed analysis, other than as preliminary check of their correlation to other models. The two
approximations are of the form,

Sfeat(k1, k2, k3) ∝ sin(
K

k∗
+ P ) , (74)

Sosci(k1, k2, k3) ∝ sin (C ln(K) + P ) , (75)

where k∗ is the associated scale of the feature in question, C is a constant and P is a phase factor. The correspondence
of these analytic approximations to the full shape function can be seen in figure (9)

Results for the shape correlator for a particular feature model (with k∗ ≈ l∗/τ0 and l∗ = 50), are given in table (I).
It can be seen to be essentially independent of all the other shapes. Obviously this is because all variations in feature
model occur in the K-direction which is orthogonal to the (α, β)-slice – it only shares the constant term in common.
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Figure 9: The scaling of the shape functions of models with features in the potentials. These are plots of the scaling of the
central value S(k, k, k) for a model with a single feature on the left, and a potential with an oscillatory component on the right.
The blue dashed line is the correct numerical result, the red solid line is the simple approximation quoted earlier (these plots
approximate those in [59]).

We conclude, from this brief survey of the literature, that we can identify the feature model in a fifth distinct
category beyond the equilateral, local, warm and flat shapes. We shall now turn to the much more formidable task
of calculating the CMB correlators directly in order to determine the accuracy of our shape correlator analysis.

CMB BISPECTRUM CALCULATION METHODOLOGY

Numerical approach

It is not feasible to directly evaluate the bispectrum for a completely general model. However, provided the shape
function obeys a mild separability ansatz then the reduced bispectrum integral can be re-written in a tractable form.
The method is based on the splitting of the shape function (34) into scale and scale-free parts (57), S(k1, k2, k3) =
f(k)S̄(α, β) , as discussed in the previous section, that is, an ansatz which applies to all the models under discussion.
By using this decomposition with the reparameterisation into rescaled wavenumbers k̂1, k̂2, k̂3 from (55), we can
rewrite the integral for the reduced bispectrum (43) in a simple form

bl1l2l3 = fNL

(
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FIG. 8 The reduced CMB bispectra for several non-Gaussian models, including (top panels, left to right) equilateral, local, flattened
models and (bottom panels) warm, feature, cosmic string models (see main text). All five primordial models are normalised relative
to the constant solution (III.48) and are taken from Fergusson & Shellard (2009)). The analytic cosmic string bispectrum (III.64) is
multiplied by (�1�2�3)4/3 and is taken from Regan & Shellard (2009).

different scaling of the string CMB bispectrum are clear from a comparison with (III.50). Moreover, given the late-
time origin of this signal from string metric perturbations, the modulating effect of acoustic peaks from the transfer
functions is absent, as is clear from fig. 8. This is just one example of late-time phenomena such as gravitational
lensing, secondary anisotropies and contaminants which are accessible to analysis using the more general CMB mode
expansions (III.60).
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First (and last) exercise: What primordial shape do you need 
to fit this?
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Figure 8: Three-dimensional orthonormal polynomials Rn on the tetrahedral domain (40). Taken from top left (and moving
across and then down) these are R0, R1, R2, R3, R4, and R41 (bottom right).
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Figure 5: The shape function of models in the equilateral class. Clockwise from top left we have the equilateral, DBI, single
and ghost models. All four of these models have the majority of their signal concentrated in the equilateral limit corresponding
to the centre of the triangle. Despite significant variations in the flattened limit, particularly around the edges of the triangle,
all are strongly correlated by 96% or greater to the equilateral model

which naturally leads to a non-zero bispectrum. The shape function for this model is of the form,
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General non-Gaussian shapes arising from modifications to single field inflation have been extensively reviewed in
ref. [20]. Using a Lagrangian that was an arbitrary function of the field and its first derivative, they were able to
identify six distinct shapes describing the possible non-Gaussian contributions. Half of these had negligible amplitude
being of the order of slow-roll parameters (two already given in (41)). Of the remaining three shapes [20] (see also
[23]), one was believed to be subdominant, the second recovered the DBI shape (68), leaving a third distinct single
field shape of the form,

Ssingle(k1, k2, k3) ∝
K111

K3
. (71)

The sub-dominant term is a complex combination of special functions (somewhat like ghost inflation (69)) with inde-
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The method is based on the splitting of the shape function (34) into scale and scale-free parts (57), S(k1, k2, k3) =
f(k)S̄(α, β) , as discussed in the previous section, that is, an ansatz which applies to all the models under discussion.
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This is a a posteriori method. So we must be very careful with our 
interpretation. How do we know if this is a real bispectrum or if it is 

just a reconstruction of noise? 
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Figure 19: Cumulative sum of mode contributions to the total F̄ 2
NL (55) for the local FNL = 100 (red) and FNL = 200 (green)

map simulations compared with Gaussian maps (blue). The 1σ variance is shaded around the mean value obtained from 100
simulations (1000 simulations for the Gaussian case).

Figure 20: Cumulative sum of mode contributions to the total F̄NL (55) for the WMAP data compared with Gaussian map
simulations as in fig. 19.

X. DISCUSSION AND CONCLUSIONS

We have implemented and validated separable mode expansions with a general late-time CMB bispectrum
estimator, using it to investigate a wide range of primordial models with WMAP 5-year data. Notable new
constraints include those on non-scaling feature models, trans-Planckian (flat) models and warm inflation.
The results for nearly scale-invariant models are summarised in Table IV, demonstrating consistency with
previous constraints on equilateral and local models. Note that we adopt a nonlinearity parameter FNL

normalised to facilitate direct comparison between the local fNL and any other model. We found no evidence
for significant deviations from Gaussianity for any specific model (at 95% confidence). Feature models were
surveyed over a wide range of parameters with periodicities above l∗ = 150 and over the full domain of
phase values. Again, no significant bispectrum detection was made, though given the nature of this survey
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constraints include those on non-scaling feature models, trans-Planckian (flat) models and warm inflation.
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previous constraints on equilateral and local models. Note that we adopt a nonlinearity parameter FNL

normalised to facilitate direct comparison between the local fNL and any other model. We found no evidence
for significant deviations from Gaussianity for any specific model (at 95% confidence). Feature models were
surveyed over a wide range of parameters with periodicities above l∗ = 150 and over the full domain of
phase values. Again, no significant bispectrum detection was made, though given the nature of this survey

We can perform a blind search on the amplitude
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As we expect the covariance matrix to be the identity we can use 
principle component analysis to identify the shape of contaminants. 

We first calculate the covariance matrix for beta from simulations

And then find the rotation which diagonalises 
it. This is equivalent to performing an eigen 

decomposition. The result is that you obtain a 
new orthonormal basis but now your modes 
are uncorrelated and ordered from greatest 

to least variance. 
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WMAP Mask
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AFTERWORD: NG FRAGMENTATION

What to do with a new NG shape function?

 1. Plot it in appropriate 2D or 3D coordinates

 2. Check cross-correlation with other standard shapes

 3. Normalise consistently relative to local shape using FNL

 4. Predict/calculate standardised eigenmode coefficients

        - await late-time and primordial mode coefficient CMB constraints

4

with solution

ζ(2)(x) =
κ2

8

∫∫

d3kd3k′

(2π)3
1

k3/2k′3/2

HH√
ε̃H

HH′

√
ε̃H′

×(2ε̃H′ + η̃H′)
k2

k2 + k′2
e−(k2+k′2)R2/2

×

(

k2 + k · k′

|k + k′|2
ei(k+k

′)·xα(k)α(k′) (19)

+
k2 − k · k′

|k − k′|2
ei(k−k

′)·xα(k)α∗(k′)

)

+ c.c.

Again, the time-dependent term e−(k2+k′2)R2/2 very
quickly goes to 1, so that ζ(2), like ζ(1), is constant on suf-
ficiently long super-horizon scales and independent of c.

From (19) we note that 〈ζ(2)〉 is indeterminate. To re-
move this ambiguity and also require that perturbations
have a zero average, we define ζ̃ ≡ ζ − 〈ζ〉. Expanding
ζ̃ = ζ̃(1)+ζ̃(2) and switching over to Fourier space, we find
the three-point correlator (or rather, the bispectrum) to
be

〈

ζ̃(x1)ζ̃(x2)ζ̃(x3)
〉

(k1,k2,k3) (20)

= (2π)3δ3 (
∑

sks) [f(k1,k2) + f(k1,k3) + f(k2,k3)]

with

f(k,k′) ≡
κ4

16

1

k3k′3

H2
H

ε̃H

H2
H′

ε̃H′

[(

(2ε̃H′ + η̃H′)
k2

k2 + k′2

×
k2 + k · k′

|k + k′|2

)

+ (k ↔ k
′)

]

. (21)

This result is independent of c, so that our choice of
smoothing scale does not matter. Note that it is valid
to second order in the perturbations, to leading order in
slow roll, and on sufficiently long super-horizon scales so
that ζ has become constant.

In the limit k3 ( k1, k2 (and hence k1 = −k2 ≡ k), the
above expression gives (leaving aside the overall factor of
(2π)3δ3(

∑

s ks)):

〈ζ̃ ζ̃ ζ̃〉 =
κ4

8

1

k3k3
3

H2
H

ε̃H

H2
H3

ε̃H3

(2ε̃H3
+ η̃H3

)

= −ñ(k3)〈|ζ(k)|2〉〈|ζ(k3)|2〉, (22)

with ñ = n−1 the scalar spectral index. From (21), the
non-linearity parameter fNL has momentum dependence
in general. In the limit where one of the momenta is
much smaller than the other two, fNL ∼ ñ during single-
field slow-roll inflation. Hence, at least in this limit,
non-Gaussianity is very small in any such inflation model
which is compatible with observations. The result (22)
agrees exactly with the corresponding limit of [8]. A sim-
ilar conclusion was also reached in [5].

However, since we have obtained the full momentum
dependence, it is interesting to go beyond this specific
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FIG. 1: (a) The three-point correlator (20), (21) for single-
field slow-roll inflation, multiplied by k3

1k3
2k

3
3/((k2

1 + k2
2 +

k2
3)/2)

3/2[(κ4/16)(H4/ε̃2)(2ε̃ + η̃)]−1, plotted to show its de-
pendence on the relative size of the three momenta. (b) An
explanation of the triangular domain used, defined in (23).

limit. Actually the three-point correlator does not de-
pend on the three full vectors k1,k2,k3, but only on
three scalar quantities, which can be taken to be the three
lengths k1, k2, k3 (physically this corresponds to statisti-
cal isotropy). We can redefine variables to get the overall
magnitude k ≡ k1 + k2 + k3 and two ratios γ and β,

γ ≡ 2
k2 − k3

k
, β ≡ −

√
3

k1 − k2 − k3

k
, (23)

which means that

k1 =
k

2

(

1 −
β√
3

)

, k2,3 =
k

4

(

1 ± γ +
β√
3

)

. (24)

In addition, because k1 + k2 + k3 = 0, one can use rela-
tions like |k1 + k2|2 = k2

3 and k1 · k2 = (k2
3 − k2

1 − k2
2)/2.

The domain of γ and β is an equilateral triangle as shown
in figure 1(b). The vertices of the triangle correspond
to one of the three momenta being zero (the limit for
(22)), while the sides correspond to one of the momenta
being equal to half the total sum (k/2). From its ver-
tex to the opposite side ks grows linearly. Plotting the
three-point correlator in such a way demonstrates its

where now the normalisation, N , is defined as follows,

N =

√

√

√

√

∑

li

B2
l1l2l3

Cl1Cl2Cl3

√

√

√

√

∑

li

B′2
l1l2l3

Cl1Cl2Cl3
. (42)

If the observational data contained a bispectrum of the form B′
l1l2l3

then C(B, B′) is an estimate of the proportion of
the correct f ′

NL we would recover by using an estimator based on Bl1l2l3 . However, this Fisher matrix approach is
extremely computationally demanding as we must calculate the full bispectrum for each model before we can make
any comparison. What we would like in addition, therefore, is a simple method allowing us to predict the value of the
correlator directly from the shape functions, thus indicating cases in which a full Fisher matrix analysis is warranted.

If we return to equation (12) for the reduced bispectrum and substitute the expression for the shape function we
have,

bl1l2l3 = fNL

(

2

π

)3 ∫

Vk

dVkS(k1, k2, k3)∆l1(k1)∆l2(k2)∆l3(k3)I
G
l1l2l3(k1, k2, k3) , (43)

where Vk is the area inside the cube [0, kmax] allowed by the triangle condition (refer to figure 1). The integral IG is
given by,

IG
l1l2l3(k1, k2, k3) =

∫

x2dxjl1 (k1x)jl2(k2x)jl3(k3x) . (44)

So S(k1, k2, k3) is the signal that is evolved via the transfer functions to give the bispectrum today, with IG giving
an additional, purely geometrical, factor. Essentially, IG acts like a window function on all the shapes as it projects
from k to l-space, that is, it tends to smear out their sharper distinguishing features, but only erasing significant
differences in extreme cases (as we shall discuss later). This means that the shape function S(k1, k2, k3), especially
in the scale-invariant case, can be thought of as the primordial counterpart of the reduced bispectrum bl1l2l3 before
projection.

To construct a shape correlator that predicts the value of (41) correctly we then should consider something of the
form

F (S, S′) =

∫

Vk

S(k1, k2, k3)S
′(k1, k2, k3)ω(k1, k2, k3)dVk , (45)

where ωε is an appropriate weight function. The question now is what weight function should we choose? Our goal
is to choose S2ω in k-space such that it produces the same scaling as the estimator B2/C3 in l-space. Note that we
are not endeavouring to build a minimal variance estimator in three-dimensional k-space as in ref. [? ], but rather an
approximate transform of the multipole estimator (41).

Let us consider the simplest case where both k1 = k2 = k3 = k and l1 = l2 = l3 = l. For primordial bispectra which
are scale invariant, then,

S2(k, k, k)ω(k, k, k) ∝ ω(k, k, k) . (46)

If we work in the large angle approximation, and assume that l+1 ≈ l, then we know Cl ∝ 1/l2 and from the analytic
solutions G, D, (20, 25) that blll ∝ 1/l4. The angle averaged bispectrum is related to the reduced bispectrum by,

Bl1l2l3 =

√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(

l1 l2 l3
0 0 0

)

bl1l2l3 . (47)

For equal l, we can deduce that,

Blll ∝
(

l l l
0 0 0

)

l−5/2 , (48)

28

k-dependence. This produces inconsistent results between models peaking or dipping at this central point
(actually along this line); contrast the factor of 7 between the quoted variances of the equilateral and local
models for exactly this reason. Furthermore, the definition is not well-defined for models which are not
scale-invariant, such as feature models, and it is simply not applicable nonGaussian signals created at late
times, such as those induced by cosmic strings or secondary anisotropies.

We, therefore, propose a universally defined bispectrum non-Gaussianity parameter FNL which (i) is a
measure of the total observational signal expected for the bispectrum of the model in question and (ii)
is normalised for direct comparison with the canonical local model (in particular, with F loc

NL = f loc
NL for a

given lmax). We presume that we have an unnormalised CMB bispectrum bl1l2l3 accurately calculated for
a specific theoretical model over the whole observationally relevant domain l ≤ lmax. This can be achieved
for any model using the separable mode expansion (76) or hierarchical methods [11]. We then define FNL

from an adapted version of the estimator (31) with

FNL =
1

NN̄loc

�

limi

Gl1l2l3
m1m2m3

bl1l2l3
al1m1al2m2al3m3

Cl1Cl2Cl3
, (102)

where N is the appropriate normalisation factor for the given model,

N 2 =
�

li

B2
l1l2l3

Cl1Cl2Cl3
, (103)

and N̄loc is the normalisation for the local model with fNL = 1,

N̄ 2
loc =

�

li

Bloc (fNL=1)
l1l2l3

2

Cl1Cl2Cl3
. (104)

This FNL estimator will certainly recover the usual fNL for the local model, but it is also clear that it will
also equitably compare the total integrated observational bispectrum with that obtained from the fNL = 1
local model. Of course, these definitions presume a sum to a given l = lmax (which should be quoted)
but results for primordial models should not depend strongly on this cut-off, unless scale-invariance is
broken. In any case, diffusion from the transfer functions means that the primordial signal is dying out
beyond l � 2000, so we propose a canonical cut-off at lmax = 2000 (which is also relevant in the medium
term for the Planck experiment). Late-time anisotropies, such as cosmic strings, do not generically fall-off
exponentially for l � 2000, but meaningful comparisons to the local fNL=1 model can be made with the
same definition (102) on this domain, and alternative measures can be proposed elsewhere. In principle, the
normalised estimator (102) can also be adapted as a gross measure of the total bispectral signal over the
given domain, irrespective of the possible underlying physical model. For example, using the reconstruction
from Parseval’s theorem (70), the estimator provides a measure of F 2

NL which should then be normalised
relative to the total expectation for the local model with N = Nloc in (102).

If the CMB bispectrum bl1l2l3 is not known precisely for the primordial model under study, then the
normalisation factor N in (103) can still be estimated using the shape function S(k1, k2, k3). Primordial
and CMB correlators are closely related, so one can obtain a fairly accurate approximation to the relative
normalisations above (103-104) from [11]

Ñ 2 =
�

Vk

S 2(k1, k2, k3) w(k1, k2, k3) dVk , (105)

where the appropriate weight function was found to be w(k1, k2, k3) ≈ 1/(k1 + k2 + k3) and the domain
Vk is given by k1, k2, k3 ≤ kmax(lmax) (refer to the discussion before (28) in section II). Here, we note
that N/N̄loc fNL=1 ≈ Ñ/Ñloc fNL=1. Using this primordial shape function normalisation Ñ in ref. [11] led
to a comparable definition of f̄NL ≈ FNL, which can be useful for making fairly accurate projections
of nonGaussianity or for renormalising fNL constraints for different models into more compatible FNL

constraints.
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CMB  PIPELINES
2

Figure 1: Flow chart for the two general estimator methodologies described and implemented in this article using complete
separable mode expansions. Note the overall redundancy which assists estimator validation and the independence of the
extraction of expansion coefficients from theory αn (cycle 1) and data βn (cycle 2). Explanations for the schematic equations
can be found in the main text.

need for new physics during inflation or even a paradigm shift away from it. Present measurements of this

local fNL are equivocal with the WMAP team reporting [3]

fNL = 51± 60 (95%) (1)

and with other teams obtaining higher [4] (WMAP3) or equivalent values [5, 6], while with improved

WMAP5 noise analysis a lower value was found fNL = 38 ± 42, but at a similar 2σ significance [7]. The

Planck satellite experiment is expected to markedly improve precision measurements with ∆fNL = 5 or

better [8].

Further motivation for the study of the bispectrum comes from the prospect of distinguishing alternative

more complex models of inflation which can produce nonGaussianity with potentially observable amplitudes

fNL � 1, but also in a variety of different bispectrum shapes, that is, with the nonGaussian signal peaked

for different triangle configurations of wavevectors. To date only special separable bispectrum shapes

have been constrained by CMB data, that is, those that can be expressed (schematically) in the form

B(k1, k2, k3) = X(k1)Y (k2)Z(k3), or else can be accurately approximated in this manner. All CMB analysis,

such as those quoted above for the local shape (1), exploits this separability to reduce the dimensionality of

the required integrations and summations to bring them to a tractable form. The separable approach reduces

the problem from one of O(l5max) operations to a manageable O(l3max) [9]. Other examples of meaningful

constraints on separable bispectrum shapes using WMAP5 data include those for the equilateral shape [3]

and another shape ‘orthogonal’ to both equilateral and local [10]. Despite these three shapes being a good

approximation to non-Gaussianity from a number of classes of inflation models, they are not exhaustive

in their coverage of known primordial models [11], nor other types of late-time non-Gaussianity, such as

that from cosmic strings [12, 13]; they cannot be expected to be, given the functional degrees of freedom

available. Bringing observations to bear on this much broader class of cosmological models, therefore, is

the primary motivation for this paper.

In a previous paper [14], we described a general approach to the estimation of non-separable CMB bis-

pectra. The method has developed out of the first direct calculations of the reduced CMB bispectrum bl1l2l3
which surveyed a wide variety of non-separable primordial models, revealing smooth coherent patterns of

Monday, 5 September 2011



CMB conclusions

• NG calculational techniques well-developed
• Growing number of primordial NG shapes

• No significant evidence for CMB NG ... yet 

• General modal WMAP bispectrum constraints  
• Useful for characterising contaminants, secondaries etc
• First near-optimal WMAP trispectrum constraints
• Planck analysis underway .... 
            First Planck cosmology papers due end 2012
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• Growing number of primordial NG shapes
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• General modal WMAP bispectrum constraints  
• Useful for characterising contaminants, secondaries etc
• First near-optimal WMAP trispectrum constraints
• Planck analysis underway .... 
            First Planck cosmology papers due end 2012

And now for something completely different:

• Postscript on large-scale structure ....
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Modal Polyspectra Estimation
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Searching for non-Gaussianity with LSS:

COMPLEMENTARITY

Verde 2010

anyway interesting: can probe smaller scales than CMB

Each probe is affected by different systematics

In many cases the interpretation gets dirty and messy,

Large-scale structure
• Complementary length scales 
• In principle, vast 3D data sets
       Present: SDSS, Wigglez, 6dF, etc
       Underway: Pan-STARRS, DES, etc
       Future: SKA, Euclid ...  ∆fNL = 1 
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Searching for non-Gaussianity with LSS:

COMPLEMENTARITY

Verde 2010

anyway interesting: can probe smaller scales than CMB

Each probe is affected by different systematics

In many cases the interpretation gets dirty and messy,

Large-scale structure
• Complementary length scales 
• In principle, vast 3D data sets
       Present: SDSS, Wigglez, 6dF, etc
       Underway: Pan-STARRS, DES, etc
       Future: SKA, Euclid ...  ∆fNL = 1 

• In practice, challenging systematics
   E.g. evolution, stars, sky brightness, color offset 

• Fully nonlinear analysis required
    Gravitational nonlinearity and bias effects
        appear in higher order polyspectra
    Computationally intensive: N-body sims-based
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Direct calculation of higher-order correlators or polyspectra
Venerable history - Groth & Peebles 1977; see Liguori, Sefusatti et al, 2010 review. 

Real-space correlators tackled on SDSS, Wigglez etc datasets see e.g. Wigglez poster. 
Computationally challenging - operations naively scale as Np (p polyspectra order)

Abundance of rare peaks Interesting, controversial, not optimal e.g. Hoyle et al 10

Scale-dependent halo bias    Dalal, Dore, Huterer, Shirokov 2007

Amplification of galaxy bias in Pg(k):

Peak-background split formulation
Desjacques et al 2009; see also Grossi et al

But also pertains to galaxy bispectrum

Bispectrum S/N wins for large surveys
   see e.g. Sefusatti et al, 2010 etc etc

  Chongchitan & Silk, 10,11;  Enqvist et al, 10 

Approaches to LSS Non-Gaussianity

The Effect

Matarrese, Verde 08

Verde, Matarrese 09

Taruya et al 08

Scale-dependence

local

Equilateral

Enfolded template

 Interesting…

Verde, Matarrese 2009
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 Interesting…
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measurements and exceeding them in precision.
In this paper we present a method for quickly calculating the bispectrum from a given density perturbation in

section II. Next we show how to extend this analysis to the trispectrum in section III. As any estimator would require
nonGaussian simulations for testing and error analysis we present an approach in section IV for including a general
bispectrum and trispectrum in the initial conditions for N -body simulations. We then go on to show in section V
how a general estimator for constraining primordial nonGaussianity can be constructed, when the bispectrum can be
approximated using a simple ansatz, and in the completely general case. Finally we present our concluding remarks.

II. LARGE-SCALE STRUCTURE BISPECTRUM CALCULATION

A. General bispectrum estimator

Higher-order correlators of the galaxy or matter density distribution can be expected to exhibit a low signal-to-noise
for individual combinations of wavenumbers (as for multipoles in the CMB). A useful strategy for the comparison
between observations and theoretical models (or simulated numerical models) is the use of an estimator which tests
for consistency by summing over all multipoles using an optimal signal-to-noise weighting. The general estimator for
the galaxy or density bispectrum, when searching for a given theoretical three-point correlator 〈δk1

δk2
δk3

〉, is

E =
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d3k1
(2π)3

d3k2
(2π)3

d3k3
(2π)3

〈δk1
δk2

δk3
〉
[

C−1(δobsk1
)C−1(δobsk2

)C−1(δobsk3
)− 3C−1(δobsk1

δobsk2
)C−1(δobsk3

)
]

(1)

where δobs
k

represents a noisy measurement of the galaxy or density perturbation with signal plus noise covariance C
given by

C−1(δobsk ) =

∫

d3k′

(2π)3
〈δkδk′〉−1 δobsk′ . (2)

We will discuss the normalisation necessary for parameter estimation in section V. Here, we have added a linear term
to the cubic estimator in order to account for inhomogeneous effects from incomplete survey coverage (e.g. due to
dust extinction), sampling bias, shot noise, and other known systematics, which together can substantially increase
the experimental variance.
If we assume that the density field is statistically isotropic, as it is in most well-motivated theoretical models, then

the bispectrum B(k1, k2, k3) is defined by

〈δk1
δk2

δk3
〉 = (2π)3δD(k1 + k2 + k3)B(k1, k2, k3) , (3)

where δD(k) is the three-dimensional Dirac δ-function enforcing a triangle condition on the wavevectors ki, for which
it is sufficient to use only the wavenumbers ki = |ki|. For simplicity, let us suppose we are only in a mildly nonlinear
regime with good observational coverage over a modest redshift range, so that we can make the approximation that
the covariance matrix is nearly diagonal C−1(δobs

k
) ≈ δobs

k
/P (k). With these replacements, the estimator (1) becomes

E =

∫

d3k1
(2π)3

d3k2
(2π)3

d3k3
(2π)3

(2π)3δD(k1 + k2 + k3)B(k1, k2, k3)

P (k1)P (k2)P (k3)

[

δobsk1
δobsk2

δobsk3
− 3〈δsimk1

δsimk2
〉δobsk3

]

, (4)

where δsim
k

represents simulated data with the known inhomogeneous systematic effects included, while we also assume
that shot noise is incorporated in the power spectrum P + N → P̃ , along with incomplete sample coverage (though
we will drop the tilde). We note that, although this galaxy estimator with a linear term (4) has not been given in this
form explicitly before, the bispectrum scaling and signal-to-noise ratios here and in what follows are consistent with
the pioneering discussions in refs. [8, 11] (see also the analogous CMB bispectrum estimator discussed in ref. [12] and
elsewhere). In any case, this large-scale structure bispectrum estimator (4) does not appear to be particularly useful
because its brute force evaluation would require at least l6max operations for a single measurement (after imposing
the triangle condition). The problem is compounded by the many simulated realizations of the observational set-up
which are required to obtain an accurate linear term in (4). In fact, if the theoretical bispectrum B(k1, k2, k3) is
computed numerically, then this is even more computationally intensive, since it requires many N -body simulations
and bispectrum evaluations to achieve statistical precision.
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Nevertheless, let us now suppose that we have a large set of simulated non-Gaussian realisations δobsk generated
with the same theoretical bispectrum B(k1, k2, k3) (and the same power spectrum P (k)). If we take the expectation
value of the estimator (4) by summing over these realisations, then we find the average to be

〈E〉 =

∫

d3k1
(2π)3

d3k2
(2π)3

d3k3
(2π)3

(2π)6δ2D(k1 + k2 + k3)
B2(k1, k2, k3)

P (k1)P (k2)P (k3)

=
V

π

∫

VB

dk1dk2dk3
k1k2k3 B2(k1, k2, k3)

P (k1)P (k2)P (k3)
, (5)

where VB is the tetrahedral region allowed by the triangle condition. The averaged estimator (5) is an important
expression, so it is instructive for subsequent calculations to outline the explicit steps that take us between these two
lines. First, the second Dirac δ-function contributes only a volume factor δ(0) = V/(2π)3. Secondly, we complete
the angular integration by expanding the integral form of the remaining δ-function in spherical Bessel functions and
harmonics,

δD(k) =
1

(2π)3

∫

d3xeik·x, (6)

eik·x = 4π
∑

lm

iljl(kx)Ylm(k̂)Y ∗
lm(x̂) . (7)

Thirdly, each k̂i integration involves just a single spherical harmonic and contributes a factor 2
√
π δl0 δm0, so we end up

with only a constant term from the Gaunt integralG000
000 = 1/2

√
π (i.e. the integration over the three remaining Ylm(x)).

Finally, the last integral over the three Bessel functions j0(k1)j0(k2)j0(k3) yields π/4k1k2k3 and simultaneously
imposes a triangle condition on k1, k2, k3 which we denote by the restricted domain of integration VB.
The estimator average (5) leads naturally to a weighted cross-correlator or inner product between two different

bispectra Bi(k1, k2, k3) and Bj(k1, k2, k3), that is,

C(Bi, Bj) =
〈Bi, Bj〉

√

〈Bi, Bi〉〈Bj , Bj〉
, (8)

where

〈Bi, Bj〉 ≡
V

π

∫

VB

dk1dk2dk3
k1k2k3 Bi(k1, k2, k3)Bj(k1, k2, k3)

P (k1)P (k2)P (k3)
. (9)

The estimator (4) is thus proportional to the Fisher matrix of the bispectrum, Fij = C(Bi, Bj)/6π (see ref. [8]).
The fiducial model for nonGaussianity is the fNL = 1 local model. For the CMB, where the final CMB bispectrum

Bl1l2l3 is linearly related to the primordial bispectrum B0(k1, k2, k3), it is straightforward to define a normalisation
which yields a universal FNL, representing the total integrated bispectrum for a particular theoretical model relative
to that from the fNL = 1 local model (see ref. [2]). However, with bispectrum contributions from gravitational collapse
and nonlinear bias arising even with Gaussian initial conditions, a universal normalisation is a more subtle issue which
we will defer to section V.
Finally, we point out that the bispectrum estimator (1) can be applied in any three-dimensional physical context

where we wish to test for a particular non-Gaussian model. It can be applied at primordial times, with potential
fluctuations (i.e. replacing δk → Φk), in the late-time linear regime on large scales where the density perturbation
is simply related by a transfer function δk = T (k, z)Φk (as in the CMB), in the mildly non-linear regime where
next-to-leading order corrections are known, or deep in the nonlinear regime on small scales where we must rely on
N -body and hydrodynamic simulations. However, for a useful implementation, we must rewrite (1) in a separable
form.

B. Separable mode expansions and bispectrum reconstruction

The averaged estimator (5) gives a natural measure for defining separable mode functions

Qn(k1, k2, k3) =
1
6 [qr(k1) qs(k2) qt(k3) + 5perms] ≡ q{r(k1) qs(k2) qt}(k3) , (10)
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measurements and exceeding them in precision.
In this paper we present a method for quickly calculating the bispectrum from a given density perturbation in

section II. Next we show how to extend this analysis to the trispectrum in section III. As any estimator would require
nonGaussian simulations for testing and error analysis we present an approach in section IV for including a general
bispectrum and trispectrum in the initial conditions for N -body simulations. We then go on to show in section V
how a general estimator for constraining primordial nonGaussianity can be constructed, when the bispectrum can be
approximated using a simple ansatz, and in the completely general case. Finally we present our concluding remarks.
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We will discuss the normalisation necessary for parameter estimation in section V. Here, we have added a linear term
to the cubic estimator in order to account for inhomogeneous effects from incomplete survey coverage (e.g. due to
dust extinction), sampling bias, shot noise, and other known systematics, which together can substantially increase
the experimental variance.
If we assume that the density field is statistically isotropic, as it is in most well-motivated theoretical models, then
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regime with good observational coverage over a modest redshift range, so that we can make the approximation that
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represents simulated data with the known inhomogeneous systematic effects included, while we also assume
that shot noise is incorporated in the power spectrum P + N → P̃ , along with incomplete sample coverage (though
we will drop the tilde). We note that, although this galaxy estimator with a linear term (4) has not been given in this
form explicitly before, the bispectrum scaling and signal-to-noise ratios here and in what follows are consistent with
the pioneering discussions in refs. [8, 11] (see also the analogous CMB bispectrum estimator discussed in ref. [12] and
elsewhere). In any case, this large-scale structure bispectrum estimator (4) does not appear to be particularly useful
because its brute force evaluation would require at least l6max operations for a single measurement (after imposing
the triangle condition). The problem is compounded by the many simulated realizations of the observational set-up
which are required to obtain an accurate linear term in (4). In fact, if the theoretical bispectrum B(k1, k2, k3) is
computed numerically, then this is even more computationally intensive, since it requires many N -body simulations
and bispectrum evaluations to achieve statistical precision.
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which yields a universal FNL, representing the total integrated bispectrum for a particular theoretical model relative
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where we wish to test for a particular non-Gaussian model. It can be applied at primordial times, with potential
fluctuations (i.e. replacing δk → Φk), in the late-time linear regime on large scales where the density perturbation
is simply related by a transfer function δk = T (k, z)Φk (as in the CMB), in the mildly non-linear regime where
next-to-leading order corrections are known, or deep in the nonlinear regime on small scales where we must rely on
N -body and hydrodynamic simulations. However, for a useful implementation, we must rewrite (1) in a separable
form.

B. Separable mode expansions and bispectrum reconstruction

The averaged estimator (5) gives a natural measure for defining separable mode functions
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estimator (or for a direct bispectrum calculation such as that described in ref. [11]) have been reduced to a series
of l3max integrations given by (14). Of course, the number of mode coefficients depends on the rate of convergence
of the expansion (11) which is usually remarkably rapid. For the CMB, a comprehensive survey of most theoretical
bispectra in the literature required only 30 eigenmodes for an accurate description at WMAP resolution [2]. Even
for a separable bispectrum in the linear regime (i.e. a terminating sum), we shall explain the advantages of using the
well-behaved mode expansion (11). The form of the next-to-leading order corrections for large-scale structure show
no obvious pathologies which would alter this convergence significantly in the mildly nonlinear regime (see later),
and substantial efficiencies will remain even in highly nonlinear contexts. This reconstruction approach (16) is ideally
suited for N -body simulations where the bispectrum can be predicted at high precision by efficiently extracting it
from multiple realizations using both Gaussian and nonGaussian initial conditions (see later). In an observational
context, sparse sampling or poor survey strategies could reduce the effectiveness of the estimator (4) in Fourier space,
so care must be taken in large scale structure survey design to ensure good coverage so that higher order correlator
measurements exploit these efficiencies.

III. EXTENSION TO THE TRISPECTRUM AND BEYOND

A. General trispectrum estimator
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δk2
δk3

δk4
〉c,

is directly analogous to that presented already in ref. [3] for the CMB:

E =

∫

d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3
d3k4

(2π)3

(

δobs
k1

δobs
k2

δobs
k3

δobs
k4

− 6
〈

δsim
k1

δsim
k2

〉

δobs
k3

δobs
k4

+ 3
〈

δsim
k1

δsim
k2

〉 〈

δsim
k3

δsim
k4

〉)

〈δk1
δk2

δk3
δk4

〉c
P (k1)P (k2)P (k3)P (k4)

,

(17)

where the notation 〈. . .〉c denotes the connected component of the correlator. Note that this formula includes the
quadratic term necessary to generalise to the case of incomplete sample coverage and inhomogeneous noise in a
similar fashion to the CMB trispectrum estimator (see the discussion after (4)). We omit the covariance-weighted
version of the expression which is obvious from a comparison with (1). Imposing the δ-function appears to leave
an intractable l9max operations for a full trispectrum estimator evaluation, but, as with the bispectrum, this can be
reduced dramatically using a separable approach.
Assuming statistical isotropy, we can choose to parametrise the trispectrum using the lengths of four of its sides

and two of its diagonals. In particular, we can exhibit these dependencies explicitly by representing the δ-function
imposing the quadrilateral condition, as a product of triangle conditions using the diagonals:

〈δk1
δk2

δk3
δk4

〉c =(2π)3δD(k1 + k2 + k3 + k4)T (k1,k2,k3,k4) (18)

=(2π)3
∫

d3K1d
3K2δD(k1 + k2 −K1)δD(k3 + k4 +K1)δD(k1 + k4 −K2)T (k1, k2, k3, k4, K1, K2),

(19)

The decomposition of the trispectrum T (k1, k2, k3, k4, K1, K2) is similar to that described in [3], but in which the
trispectrum is assumed to depend on the first five parameters only. In the interest of completeness we evaluate a
suitable weight function necessary for evaluation of the more general decomposition from the expectation value of the
estimator (17). Similarly to the case of the bispectrum (5), the expectation value for the estimator is found to take
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which we can use to decompose an arbitrary bispectrum (here, for convenience, the label n, denotes a linear ordering
of the 3D products n ↔ {rst}). We choose to expand the bispectrum B(k1, k2, k3) in its noise-weighted form (see
ref. [1]),

B(k1, k2, k3) v(k1)v(k2)v(k3)
√

P (k1)P (k2)P (k3)
=

∑

αQ

nQn(k1, k2, k3) , (11)

where we have used the freedom to introduce a separable modification to the weight function w(k1, k2, k3) =
k1k2k3/v2(k1)v2(k2)v2(k3) in (5). Series convergence usually can be improved with scale-invariance, suggesting the
choice v(k) =

√
k. The exact form of the one-dimensional basis functions qr(k) is not important, except that they

should be bounded and well-behaved on the bispectrum domain VB. Some qr(k) examples which are orthogonal on
VB were given explicitly in ref. [1], analogues of Legendre polynomials Pn(k).
The product functions Qn are independent but not necessarily orthogonal, so it is convenient from these to generate

an orthonormal set of mode functions Rn, such that, 〈Rn, Rm〉 = δnm (achieved using Gram-Schmidt orthogonali-
sation with the inner product (8)). We distinguish the expansion coefficients αQ

n and αR

n by the superscripts for the
separable ‘Q’ and orthonormal ‘R’ modes respectively; these are related to each other by a rotation involving the
matrices 〈Qm, Qn〉 and 〈Qm, Rn〉(see ref. [1]). The orthonormal modes Rn are convenient for finding the expansion
coefficients of an arbitrary bispectrum B(k1, k2, k3) from the inner product (8) through αR

n = 〈B, Rn〉 which are then
rotated to the more explicitly separable form αQ

n . Of course, there is some computational effort O(nmax × l3max) to
achieve this orthogonalisation and decomposition, but it is a modest initial computation which creates a framework
for the subsequent data and error analysis.
Now consider the effect of substituting the expansion (11) into the bispectrum estimator (4). It collapses to the

simple summation

E =
∑

n

αQ

n βQ

n , (12)

where the observed βQ

n coefficients are defined by

βQ

n =

∫

d3xMr(x)Ms(x)Mt(x) , (13)

with Mr(x) the observed density perturbation convolved in Fourier space with the mode functions qr(k), that is,

Mr(x) =

∫

d3k
δobs
k

qr(k) eik·x
√

kP (k)
. (14)

Including the linear term in (4) to account for systematic inhomogeneous effects we have

βQ

n =

∫

d3x (Mr(x)Ms(x)Mt(x) − [〈Mr(x)Ms(x)〉Mt(x) + 2 perms]) . (15)

Furthermore, rotating to the orthonormal frame with Rn, it is straightforward to demonstrate that the averaged
observed coefficient will be αR

n = 〈βR

n 〉, given a set of realizations with the bispectrum B(k1, k2, k3) in (11). Thus we
can directly reconstruct the bispectrum from a single realization (with sufficient single-to-noise) using

B(k1, k2, k3) =

√

P (k1)P (k2)P (k3)√
k1k2k3

∑

n

βR

n Rn(k1, k2, k3) . (16)

This reconstruction yields the full bispectrum shape in a model independent manner. One can also consider a model
independent measure of the total integrated non-Gaussian signal, using Parseval’s theorem in the orthonormal frame
(see ref. [2] for a discussion of the quantity ¯FNL

2
=

∑

n β
R

n
2). However, the bispectrum estimator (12) provides

an immediate means to determine the significance of an observation of a particular type of nonGaussianity with
specific coefficients αQ

n , e.g. by comparison with the βR

n extracted from Gaussian simulations. We note that an initial
implementation of the bispectrum reconstruction method (16) indicates its efficacy in recovering local nonGaussianity.
We emphasise that the bispectrum reconstruction (16) provides an extremely efficient method for calculating the

bispectrum from any given density field δk with optimum noise weighting. Moreover, these separable mode expansion
methods have been thoroughly tested in a CMB context [2]. In essence, the l6max operations required with the original
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from an enhanced primordial bispectrum FNLB0(k1, k2, k3) [21]:

PB(k) =
FNL

(2π)3

∫

d3yB0(k,y,k − y)F2(y,k − y) =
FNL

(2π)3

∫

d3yd3k2δ(k2 − k+ y)B0(k, y, k2)F2(y,k2), (41)

where the gravitational kernel for this convolution is given by

F2(y,k2) =
17

21
+ P1(µ)

(

y

k2
+

k2
y

)

+
4

21
P2(µ) . (42)

Taking the separable expansion (11) for B0(k1, k2, k3) and substituting into eqn (41), we find the simple integral over
the mode functions qr(k):

PB(k) =FNL

∑

n

αn

2π2

qr(k)
√

P (k)

k3/2

∫

VB

dydk2
√

yP (y) qs(y)
√

k2P (k2) qt(k2)

×
[5

7
+

2

7

(

k22 + y2 − k2

2k2y

)2

−
(

y

k2
+

k2
y

)(

k22 + y2 − k2

2k2y

)

]

, (43)

where VB represents the domain for which the triangle condition holds for the wavenumbers (k2, y, k). Note that this
integral breaks down into products of one dimensional integrals over y and k2 which can be evaluated easily. Here,
the calculation steps leading to (43) are very similar to those used to obtain (5).
In the mildly nonlinear regime, the matter density bispectrum similarly contains nonlinear contributions from

gravitational collapse, from the primordial bispectrum FNLB0, and from the primordial trispectrum τNLT0 [13, 22]:

B(k1, k2, k3) = [2F2(k1,k2P0(k1)P0(k2) + 2 perms] + FNLB0(k1, k2, k3)] (44)

+
τNL

(2π)3

∫

d3yT0(k1,k2,y,k3 − y)F2(y,k3 − y) + 2 perms .

≡ BG(k1, k2, k3) + FNLB0(k1, k2, k3) + τNLB
T (k1, k2, k3)

In Appendix B, we substitute the separable expansion for the trispectrum (24) into (44) to find integral expressions
for the resulting bispectrum. For non-diagonal trispectra, the result is simple and very similar to the power spectrum
modification (43). The result is three distinct contributions to the late-time bispectrum ωB(k1, k2, k3) =

∑

n αnQn

with the bispectrum approximated as in separable form as

ωB(k1, k2, k3) =
∑

n

(αG
n + FNLα

B
n + τNLα

T
n )Rn(k1, k2, k3) , (45)

with the coefficients αi
n representing distinct shapes in the orthonormal frame. Here, the primordial αB coefficients

are normalised such that in the initial conditions FNL = 1, and similarly for the primordial trispectrum τNL = 1.
Setting aside the trispectrum contribution, if can remove the Gaussian part from αn, βn then we have an optimal

estimator for the nonGaussianity parameter FNL ,

E =
1

N2

∑

αB
n β

B
n , (46)

where we have defined the predicted αB
n and measured βB

n by

αB
n = αn − ᾱG

n , βB
n = βn − β̄G

n , N2 =
∑

αB
n
2
. (47)

Here ᾱG
n refers to the decomposition coefficients for Gaussian initial conditions, calculated either from theory (as above

in (44)) or obtained from N -body simulations (note ᾱG
n = β̄G

n ) and the αn are calculated from initial conditions with
FNL = 1. The variance of the estimator can then be calculated by applying it to a large set of Gaussian simulations.
This is directly analogous to the CMB estimator used in [1] (where of course ᾱG

n = 0).
However, in the nonlinear regime, and with significant bias affecting the galaxy distribution, it will not be possible

to approximate nonGaussianity in this simple way. We need to approach parameter estimation for FNL (or τNL)
quite differently. The estimator (46) can be thought of as a least squares fit of the theory to the data. As the relative
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size of the individual αB
n are constant, we can only change the amplitude, FNL, we must simply choose a FNL which

minimises

E =
∑

(

αB
n FNL − βB

n

)2
(48)

for a given form of αB
n . In the general case we expect the ratios of the individual coefficients to change as we change

FNL. As a result we must consider the αn to be an arbitrary function of FNL and so we now wish to minimise

E(FNL) =
∑

(αn(FNL)− βn)
2 (49)

with respect to FNL. We will assume that it will not be possible in general to determine αn(FNL) analytically so
that we could then try to solve ∂E/∂FNL = 0. This means that to minimise E requires extracting the αn from sets
of N -body simulations each with different non-Gaussian initial conditions which correspond to a particular FNL. We
then reconstruct the dependence of E on FNL and find the best-fit FNL for the given observations. One also must
be careful calculating the variance on such a measurement of FNL. In general this would entail applying the same
approach to each density distribution in the set of simulations with the estimated FNL and then determining the
distribution of the recovered FNL. Of course, Gaussian simulations may be substituted if FNL is sufficiently small that
the effect on the error bars is negligible.
Finally, we note that in general the galaxy bispectrum will take contributions from both the bispectrum and trispec-

trum of the curvature perturbation [13] (which is why we cannot in general connect FNL with its CMB counterpart in
a simple way). The amplitudes of FNL and τNL can be determined by consistency conditions for certain models or they
can vary independently. In this case we must constrain the amplitude of both FNL and τNL contributions marginalising
over these two parameters. Such a computationally intensive analysis becomes much more feasible with an efficient
bispectrum extraction method (16) and with non-Gaussian initial conditions which include the specification of the
trispectrum (33).

VI. CONCLUSION

While the CMB is an ideal observable for tests of primordial nonGaussianity since the perturbations remain in
the linear regime, the prospects for achieving comparable, and ultimately superior, constraints on nonGaussianity
in the near future using large-scale structure appears encouraging due to recent advancements in the analysis and
development of N-body codes.
In this paper we have described how methods developed for the analysis of nonGaussianity in the CMB may be

applied to surveys of large-scale structure. These methods are based on mode expansions, exploiting a complete
orthonormal eigenmode basis to efficiently decompose arbitrary poly-spectra into a separable polynomial expansion.
Applying the methodology to the bispectrum reveals a vast improvement in computational speed for finding a general

estimator and correlator, reducing complexity from O(l6max) to O(nmax × l3max). As we use a complete orthonormal
basis we are also able to efficently calculate the bispectrum from simulations and, assuming sufficent signal to noise,
observations. Of particular interest is the application to the generation of nonGaussian initial conditions for N-body
codes. The approach can be used to create initial conditions with arbitrary independent poly-spectra. With this
method calculation of the bispectrum contribution requires a similar number of operations as decomposition. This
improvement to the brute force approach opens up the opportunity of investigating a far wider range of models using
large-scale structure than has hitherto been considered.
The extension of the approach to the trispectrum has also been described in some detail. As with the bispectrum

computational speed is vastly improved using the separable method. However, for trispectra that depend on the
diagonals as well as the wavenumbers, the decomposition into separable modes is still a computationally intensive
operation requiring up to O(l6max) operations. Nonetheless, this decomposition need only be performed once for each
model. In the particular case that the trispectra is independent of the diagonals the decomposition process may be
performed efficiently in O(l4max) operations. It should also be noted that the general trispectrum may be divided
into contributions denoted as ‘reduced’ trispectra. Since, for almost all theoretical trispectra presented to date in
the literature, the reduced trispectra depends on five parameters (i.e. the four wavenumbers and one diagonal) a
reduction in complexity for this wide range of models may also be achieved. This class of models will be discussed in
a subsequent article [14].
As in the case of the bispectrum, this approach can also be used to recover trispectra from simulations and produce

nonGaussian initial conditions with arbitrary trispectra for N-body codes. Once the trispectrum has been decomposed
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which we can use to decompose an arbitrary bispectrum (here, for convenience, the label n, denotes a linear ordering
of the 3D products n ↔ {rst}). We choose to expand the bispectrum B(k1, k2, k3) in its noise-weighted form (see
ref. [1]),

B(k1, k2, k3) v(k1)v(k2)v(k3)
√

P (k1)P (k2)P (k3)
=

∑

αQ

nQn(k1, k2, k3) , (11)

where we have used the freedom to introduce a separable modification to the weight function w(k1, k2, k3) =
k1k2k3/v2(k1)v2(k2)v2(k3) in (5). Series convergence usually can be improved with scale-invariance, suggesting the
choice v(k) =

√
k. The exact form of the one-dimensional basis functions qr(k) is not important, except that they

should be bounded and well-behaved on the bispectrum domain VB. Some qr(k) examples which are orthogonal on
VB were given explicitly in ref. [1], analogues of Legendre polynomials Pn(k).
The product functions Qn are independent but not necessarily orthogonal, so it is convenient from these to generate

an orthonormal set of mode functions Rn, such that, 〈Rn, Rm〉 = δnm (achieved using Gram-Schmidt orthogonali-
sation with the inner product (8)). We distinguish the expansion coefficients αQ

n and αR

n by the superscripts for the
separable ‘Q’ and orthonormal ‘R’ modes respectively; these are related to each other by a rotation involving the
matrices 〈Qm, Qn〉 and 〈Qm, Rn〉(see ref. [1]). The orthonormal modes Rn are convenient for finding the expansion
coefficients of an arbitrary bispectrum B(k1, k2, k3) from the inner product (8) through αR

n = 〈B, Rn〉 which are then
rotated to the more explicitly separable form αQ

n . Of course, there is some computational effort O(nmax × l3max) to
achieve this orthogonalisation and decomposition, but it is a modest initial computation which creates a framework
for the subsequent data and error analysis.
Now consider the effect of substituting the expansion (11) into the bispectrum estimator (4). It collapses to the

simple summation

E =
∑

n

αQ

n βQ

n , (12)

where the observed βQ

n coefficients are defined by

βQ

n =

∫

d3xMr(x)Ms(x)Mt(x) , (13)

with Mr(x) the observed density perturbation convolved in Fourier space with the mode functions qr(k), that is,

Mr(x) =

∫

d3k
δobs
k

qr(k) eik·x
√

kP (k)
. (14)

Including the linear term in (4) to account for systematic inhomogeneous effects we have

βQ

n =

∫

d3x (Mr(x)Ms(x)Mt(x) − [〈Mr(x)Ms(x)〉Mt(x) + 2 perms]) . (15)

Furthermore, rotating to the orthonormal frame with Rn, it is straightforward to demonstrate that the averaged
observed coefficient will be αR

n = 〈βR

n 〉, given a set of realizations with the bispectrum B(k1, k2, k3) in (11). Thus we
can directly reconstruct the bispectrum from a single realization (with sufficient single-to-noise) using

B(k1, k2, k3) =

√

P (k1)P (k2)P (k3)√
k1k2k3

∑

n

βR

n Rn(k1, k2, k3) . (16)

This reconstruction yields the full bispectrum shape in a model independent manner. One can also consider a model
independent measure of the total integrated non-Gaussian signal, using Parseval’s theorem in the orthonormal frame
(see ref. [2] for a discussion of the quantity ¯FNL

2
=

∑

n β
R

n
2). However, the bispectrum estimator (12) provides

an immediate means to determine the significance of an observation of a particular type of nonGaussianity with
specific coefficients αQ

n , e.g. by comparison with the βR

n extracted from Gaussian simulations. We note that an initial
implementation of the bispectrum reconstruction method (16) indicates its efficacy in recovering local nonGaussianity.
We emphasise that the bispectrum reconstruction (16) provides an extremely efficient method for calculating the

bispectrum from any given density field δk with optimum noise weighting. Moreover, these separable mode expansion
methods have been thoroughly tested in a CMB context [2]. In essence, the l6max operations required with the original
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from an enhanced primordial bispectrum FNLB0(k1, k2, k3) [21]:

PB(k) =
FNL

(2π)3

∫

d3yB0(k,y,k − y)F2(y,k − y) =
FNL

(2π)3

∫

d3yd3k2δ(k2 − k+ y)B0(k, y, k2)F2(y,k2), (41)

where the gravitational kernel for this convolution is given by

F2(y,k2) =
17

21
+ P1(µ)

(

y

k2
+

k2
y

)

+
4

21
P2(µ) . (42)

Taking the separable expansion (11) for B0(k1, k2, k3) and substituting into eqn (41), we find the simple integral over
the mode functions qr(k):

PB(k) =FNL

∑

n

αn

2π2

qr(k)
√

P (k)

k3/2

∫

VB

dydk2
√

yP (y) qs(y)
√

k2P (k2) qt(k2)

×
[5

7
+

2

7

(

k22 + y2 − k2

2k2y

)2

−
(

y

k2
+

k2
y

)(

k22 + y2 − k2

2k2y

)

]

, (43)

where VB represents the domain for which the triangle condition holds for the wavenumbers (k2, y, k). Note that this
integral breaks down into products of one dimensional integrals over y and k2 which can be evaluated easily. Here,
the calculation steps leading to (43) are very similar to those used to obtain (5).
In the mildly nonlinear regime, the matter density bispectrum similarly contains nonlinear contributions from

gravitational collapse, from the primordial bispectrum FNLB0, and from the primordial trispectrum τNLT0 [13, 22]:

B(k1, k2, k3) = [2F2(k1,k2P0(k1)P0(k2) + 2 perms] + FNLB0(k1, k2, k3)] (44)

+
τNL

(2π)3

∫

d3yT0(k1,k2,y,k3 − y)F2(y,k3 − y) + 2 perms .

≡ BG(k1, k2, k3) + FNLB0(k1, k2, k3) + τNLB
T (k1, k2, k3)

In Appendix B, we substitute the separable expansion for the trispectrum (24) into (44) to find integral expressions
for the resulting bispectrum. For non-diagonal trispectra, the result is simple and very similar to the power spectrum
modification (43). The result is three distinct contributions to the late-time bispectrum ωB(k1, k2, k3) =

∑

n αnQn

with the bispectrum approximated as in separable form as

ωB(k1, k2, k3) =
∑

n

(αG
n + FNLα

B
n + τNLα

T
n )Rn(k1, k2, k3) , (45)

with the coefficients αi
n representing distinct shapes in the orthonormal frame. Here, the primordial αB coefficients

are normalised such that in the initial conditions FNL = 1, and similarly for the primordial trispectrum τNL = 1.
Setting aside the trispectrum contribution, if can remove the Gaussian part from αn, βn then we have an optimal

estimator for the nonGaussianity parameter FNL ,

E =
1

N2

∑

αB
n β

B
n , (46)

where we have defined the predicted αB
n and measured βB

n by

αB
n = αn − ᾱG

n , βB
n = βn − β̄G

n , N2 =
∑

αB
n
2
. (47)

Here ᾱG
n refers to the decomposition coefficients for Gaussian initial conditions, calculated either from theory (as above

in (44)) or obtained from N -body simulations (note ᾱG
n = β̄G

n ) and the αn are calculated from initial conditions with
FNL = 1. The variance of the estimator can then be calculated by applying it to a large set of Gaussian simulations.
This is directly analogous to the CMB estimator used in [1] (where of course ᾱG

n = 0).
However, in the nonlinear regime, and with significant bias affecting the galaxy distribution, it will not be possible

to approximate nonGaussianity in this simple way. We need to approach parameter estimation for FNL (or τNL)
quite differently. The estimator (46) can be thought of as a least squares fit of the theory to the data. As the relative
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size of the individual αB
n are constant, we can only change the amplitude, FNL, we must simply choose a FNL which

minimises

E =
∑

(

αB
n FNL − βB

n

)2
(48)

for a given form of αB
n . In the general case we expect the ratios of the individual coefficients to change as we change

FNL. As a result we must consider the αn to be an arbitrary function of FNL and so we now wish to minimise

E(FNL) =
∑

(αn(FNL)− βn)
2 (49)

with respect to FNL. We will assume that it will not be possible in general to determine αn(FNL) analytically so
that we could then try to solve ∂E/∂FNL = 0. This means that to minimise E requires extracting the αn from sets
of N -body simulations each with different non-Gaussian initial conditions which correspond to a particular FNL. We
then reconstruct the dependence of E on FNL and find the best-fit FNL for the given observations. One also must
be careful calculating the variance on such a measurement of FNL. In general this would entail applying the same
approach to each density distribution in the set of simulations with the estimated FNL and then determining the
distribution of the recovered FNL. Of course, Gaussian simulations may be substituted if FNL is sufficiently small that
the effect on the error bars is negligible.
Finally, we note that in general the galaxy bispectrum will take contributions from both the bispectrum and trispec-

trum of the curvature perturbation [13] (which is why we cannot in general connect FNL with its CMB counterpart in
a simple way). The amplitudes of FNL and τNL can be determined by consistency conditions for certain models or they
can vary independently. In this case we must constrain the amplitude of both FNL and τNL contributions marginalising
over these two parameters. Such a computationally intensive analysis becomes much more feasible with an efficient
bispectrum extraction method (16) and with non-Gaussian initial conditions which include the specification of the
trispectrum (33).

VI. CONCLUSION

While the CMB is an ideal observable for tests of primordial nonGaussianity since the perturbations remain in
the linear regime, the prospects for achieving comparable, and ultimately superior, constraints on nonGaussianity
in the near future using large-scale structure appears encouraging due to recent advancements in the analysis and
development of N-body codes.
In this paper we have described how methods developed for the analysis of nonGaussianity in the CMB may be

applied to surveys of large-scale structure. These methods are based on mode expansions, exploiting a complete
orthonormal eigenmode basis to efficiently decompose arbitrary poly-spectra into a separable polynomial expansion.
Applying the methodology to the bispectrum reveals a vast improvement in computational speed for finding a general

estimator and correlator, reducing complexity from O(l6max) to O(nmax × l3max). As we use a complete orthonormal
basis we are also able to efficently calculate the bispectrum from simulations and, assuming sufficent signal to noise,
observations. Of particular interest is the application to the generation of nonGaussian initial conditions for N-body
codes. The approach can be used to create initial conditions with arbitrary independent poly-spectra. With this
method calculation of the bispectrum contribution requires a similar number of operations as decomposition. This
improvement to the brute force approach opens up the opportunity of investigating a far wider range of models using
large-scale structure than has hitherto been considered.
The extension of the approach to the trispectrum has also been described in some detail. As with the bispectrum

computational speed is vastly improved using the separable method. However, for trispectra that depend on the
diagonals as well as the wavenumbers, the decomposition into separable modes is still a computationally intensive
operation requiring up to O(l6max) operations. Nonetheless, this decomposition need only be performed once for each
model. In the particular case that the trispectra is independent of the diagonals the decomposition process may be
performed efficiently in O(l4max) operations. It should also be noted that the general trispectrum may be divided
into contributions denoted as ‘reduced’ trispectra. Since, for almost all theoretical trispectra presented to date in
the literature, the reduced trispectra depends on five parameters (i.e. the four wavenumbers and one diagonal) a
reduction in complexity for this wide range of models may also be achieved. This class of models will be discussed in
a subsequent article [14].
As in the case of the bispectrum, this approach can also be used to recover trispectra from simulations and produce

nonGaussian initial conditions with arbitrary trispectra for N-body codes. Once the trispectrum has been decomposed
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where the integral over the five spherical Bessel functions serves also to define the allowed quadspectrum domain VQ.
The expression (29) may be used to derive a weight to decompose the quadspectrum in the form Q̃(k1, k2, k3, k4, k5) =�

n αnQn(k1, k2, k3, k4, k5) where n ↔ {r, s, t, u, v} and Qn(k1, k2, k3, k4, k5) = qr(k1)qs(k2)qt(k3)qu(k4)qv(k5). The
resulting separable estimator is directly analogous to that for the nondiagonal trispectrum (28), but for brevity we
will only discuss initial conditions with a nontrivial quadspectrum.

IV. EFFICIENT GENERATION OF ARBITRARY NON-GAUSSIAN INITIAL CONDITIONS

The generation of non-Gaussian initial conditions for N -body simulations with a given primordial bispectrum has
been achieved to date only for bispectra which have a simple separable form (see, e.g., [8? –10]). For N -body codes
to efficiently produce non-Gaussian initial conditions for an arbitrary non-separable bispectrum, will requires a well-
behaved separable mode decomposition, as achieved for CMB map simulations in ref. [? ]. However, we can do even
better by simulating initial data given both an arbitrary bispectrum and trispectrum, as shown for the CMB in ref. [11].
As we have discussed already, this is of particular interest for measurements of the large-scale structure bispectrum,
because of nonlinear contributions expected from the trispectrum. We describe the non-Gaussian primordial potential
perturbation as

Φ =Φ G + FNLΦB + τNLΦT (30)

where ΦG is a Gaussian random field with the required power spectrum P (k). Following ref. [? ] for the primordial
bispectrum B(k1, k2, k3) with separable expansion (??), the bispectrum contribution to the primordial perturbation
Φ becomes simply

ΦB(k) =
�

d3k
�

(2π)3
d3k

��

(2π)3
(2π)3δ(k + k

�
+ k

��
)B(k, k

�
, k

��
)ΦG(k

�
)ΦG(k

��
)

P (k�)P (k��)
, (31)

=
�

n

αn

�
P (k)

k
q{r(k)

�
d3xeik.xMs(x)Mt}(x), (32)

where the filtered density perturbations Ms(x) are as defined previously in (12) for the bispectrum estimator (??).
(We note that the bispectrum algorithm in ref. [? ] used here is a generalization of the CMB bispectrum algorithm
presented in ref. [? ].) Of course, we normalise B(k1, k2, k3) such that it has FNL = 1. Like the estimator, this requires
only O(nmax × l3max) operations for every realization of new initial conditions, as opposed to a brute force approach
which requires l6max. Note also that once the nmax filtered density perturbations

�
d3xeik.xMs(x)Mt}(x) have been

obtained for a given ΦB , they can be applied to an arbitrary number of different shaped bispectra represent by αQn ’s.
We can similarly find a relatively simple and highly efficient expression to compute initial conditions for the trispec-

trum ΦT . Following ref. [11], the primordial trispectrum T (k1, k2, k3, µ, ν) represented and expanded using wavenum-
ber qr(k) and angle Pu(µ) modes as in (??), the trispectrum contribution to Φ becomes

ΦT (k) =
�

d3k
�

(2π)3
d3k

��

(2π)3
d3k

���

(2π)3
(2π)3δ(k + k

�
+ k

��
+ k

���
)T (k,k

�
,k

��
,k

���
)ΦG(k

�
) .ΦG(k

��
)ΦG(k

���
)

P (k�)P (k��)P (k���)
(33)

=
�

nl1l2

ᾱQnl1l2

(4π)2

(2l1 + 1)(2l2 + 1)

�

m1m2

Yl1m1(k̂)Yl2m2(k̂)qr(k)
�

d3xeik.xMm1∗
sl1

(x)Mt(x)Mm2∗
ul2

(x), (34)

where the filtered density perturbations Mm1∗
sl1

and Mt are as in the earlier expression for βnl1l2 except for the
replacement of δobs

k with ΦG(k). We have shown in ref. [11] that the bispectrum (31) and trispectrum (33) contributions
are independent and do not influence each other.

For the particular case that the trispectrum is independent of the angles µ, ν (or diagonals K1, K2) the decompo-
sition is somewhat simpler:

ΦT (k) =
�

n

ᾱQnqr(k)
�

d3xeik.xMs(x)Mt(x)Mu(x) . (35)

This applies to many cases in the literature, including constant, local and equilateral models. This simplification will
also apply to initial conditions with non-diagonal quadspectra (??). The expression for quadspectrum perturbation
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accurate representation. As an example, even the pathological local model with diverging squeezed states requires
only nmax = 20 for the expansion (24) to achieve a 95% correlation with the primordial shape. It is clear that there
is no inherent impediment to direct estimation and evaluation of trispectra from survey data of adequate quality.
This separable methodology can be applied to correlators beyond the trispectrum, such as the quadspectrum

Q̃(k1,k2,k3,k4,k5) defined from

〈δk1
δk2

δk3
δk4

δk5
〉 = (2π)3δ(k1 + k2 + k3 + k4 + k5)Q̃(k1,k2,k3,k4,k5) . (31)

For simplicity, however, we restrict attention here to quadspectra that are non-diagonal, depending only on the
wavenumbers k1, . . . , k5, that is, Q̃(k1,k2,k3,k4,k5) = Q̃(k1, k2, k3, k4, k5). The expectation value of the quadspec-
trum estimator is then given by

〈E〉 =
V

(2π)3

∫
(

Π5
i=1

d3ki

(2π)3

)

(2π)6δ(k1 + k2 + k3 + k4 + k5)Q̃2(k1, k2, k3, k4, k5)

P (k1)P (k2)P (k3)P (k4)P (k5)

=
V

(2π3)3

∫

dk1dk2dk3dk4dk5(k1k2k3k4k5)
2

(
∫

dxx2j0(k1x)j0(k2x)j0(k3x)j0(k4x)j0(k5x)

)

×
Q̃2(k1, k2, k3, k4, k5)

P (k1)P (k2)P (k3)P (k4)P (k5)
, (32)

where the integral over the five spherical Bessel functions serves also to define the allowed quadspectrum
domain VQ. The expression (32) may be used to derive a weight to decompose the quadspectrum in

the form
[

Π5
i=1v(ki)/

√

P (ki)
]

Q̃(k1, k2, k3, k4, k5) =
∑

n αnQn(k1, k2, k3, k4, k5) where n ↔ {r, s, t, u, v} and

Qn(k1, k2, k3, k4, k5) = q{r(k1)qs(k2)qt(k3)qu(k4)qv}(k5), and where imposing scale invariance sets v(k) = k9/10. The
resulting separable estimator is directly analogous to that for the non-diagonal trispectrum (30), but for brevity we
will only discuss initial conditions with a non-trivial quadspectrum.

IV. EFFICIENT GENERATION OF ARBITRARY NON-GAUSSIAN INITIAL CONDITIONS

The generation of non-Gaussian initial conditions for N -body simulations with a given primordial bispectrum has
been achieved to date only for bispectra which have a simple separable form (see, e.g., [15–18]). For N -body codes
to efficiently produce non-Gaussian initial conditions for an arbitrary non-separable bispectrum, will require a well-
behaved separable mode decomposition, as achieved for CMB map simulations in ref. [1]. However, we can do even
better by simulating initial data given both an arbitrary bispectrum and trispectrum, as shown for the CMB in ref. [3].
As we have discussed already, this is of particular interest for measurements of the large-scale structure bispectrum,
because of nonlinear contributions expected from the trispectrum. We describe the non-Gaussian primordial potential
perturbation as

Φ = ΦG +
1

6
FNLΦ

B +
1

24
τNLΦ

T , (33)

where ΦG is a Gaussian random field with the required power spectrum P (k). Following ref. [1] for the primordial
bispectrum B(k1, k2, k3) with separable expansion (11), the bispectrum contribution to the primordial perturbation
Φ becomes simply

ΦB(k) =

∫

d3k
′

(2π)3
d3k

′′

(2π)3
(2π)3δ(k+ k

′

+ k
′′

)B(k, k
′

, k
′′

)ΦG(k
′

)ΦG(k
′′

)

P (k′)P (k′′)
(34)

=
∑

n

αn

√

P (k)

k
qr(k)

∫

d3xeik.xMs(x)Mt(x), (35)

where the filtered density perturbations Ms(x) are as defined previously in (14) for the bispectrum estimator (12)
except for the replacement of δobs

k
with ΦG(k). (We note that the bispectrum algorithm in ref. [1] used here is a

generalization of the CMB bispectrum algorithm presented in ref. [19].) Of course, we normalise B(k1, k2, k3) such
that it has FNL = 1. Like the estimator, this requires only O(nmax × l3max) operations for every realization of new
initial conditions, as opposed to a brute force approach which requires l6max. Note also that once the nmax filtered

ΦB(k) =
�

d3k
�

(2π)3
d3k

��

(2π)3
(2π)3δ(k + k

�
+ k

��
)B(k, k

�
, k

��
)ΦG(k

�
)ΦG(k

��
)

P (k�)P (k��)
(16)

ΦB(k) =
�

d3k
�

(2π)3
d3k

��

(2π)3
(2π)3δ(k + k

�
+ k

��
)B(k, k

�
, k

��
)ΦG(k

�
)ΦG(k

��
)

P (k�)P (k��)
(17)

B ≈ BG + FNLBNG (18)

B ≈ BG + FNLBNG (19)

E =
1

NNL2

�
αNL

n βNL
n (20)

E =
1

NNL2

�
αNL

n βNL
n (21)

αNL
n = αn − ᾱG

n , βNL
n = βn − ᾱG

n , NNL2
=

�
αNL

n
2

(22)

αNL
n = αn − ᾱG

n , βNL
n = βn − ᾱG

n , NNL2
=

�
αNL

n
2

(23)

E(FNL) =
�

(αn(FNL)− βn)2 (24)

E(FNL) =
�

(βn − αn(FNL))2 (25)

P (k) P (k�) + P (k�) P (k��) + P (k) P (k��) (26)
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where the integral over the five spherical Bessel functions serves also to define the allowed quadspectrum domain VQ.
The expression (29) may be used to derive a weight to decompose the quadspectrum in the form Q̃(k1, k2, k3, k4, k5) =�

n αnQn(k1, k2, k3, k4, k5) where n ↔ {r, s, t, u, v} and Qn(k1, k2, k3, k4, k5) = qr(k1)qs(k2)qt(k3)qu(k4)qv(k5). The
resulting separable estimator is directly analogous to that for the nondiagonal trispectrum (28), but for brevity we
will only discuss initial conditions with a nontrivial quadspectrum.

IV. EFFICIENT GENERATION OF ARBITRARY NON-GAUSSIAN INITIAL CONDITIONS

The generation of non-Gaussian initial conditions for N -body simulations with a given primordial bispectrum has
been achieved to date only for bispectra which have a simple separable form (see, e.g., [8? –10]). For N -body codes
to efficiently produce non-Gaussian initial conditions for an arbitrary non-separable bispectrum, will requires a well-
behaved separable mode decomposition, as achieved for CMB map simulations in ref. [? ]. However, we can do even
better by simulating initial data given both an arbitrary bispectrum and trispectrum, as shown for the CMB in ref. [11].
As we have discussed already, this is of particular interest for measurements of the large-scale structure bispectrum,
because of nonlinear contributions expected from the trispectrum. We describe the non-Gaussian primordial potential
perturbation as

Φ =Φ G + FNLΦB + τNLΦT (30)

where ΦG is a Gaussian random field with the required power spectrum P (k). Following ref. [? ] for the primordial
bispectrum B(k1, k2, k3) with separable expansion (??), the bispectrum contribution to the primordial perturbation
Φ becomes simply

ΦB(k) =
�

d3k
�

(2π)3
d3k

��

(2π)3
(2π)3δ(k + k

�
+ k

��
)B(k, k

�
, k

��
)ΦG(k

�
)ΦG(k

��
)

P (k�)P (k��)
, (31)

=
�

n

αn

�
P (k)

k
q{r(k)

�
d3xeik.xMs(x)Mt}(x), (32)

where the filtered density perturbations Ms(x) are as defined previously in (12) for the bispectrum estimator (??).
(We note that the bispectrum algorithm in ref. [? ] used here is a generalization of the CMB bispectrum algorithm
presented in ref. [? ].) Of course, we normalise B(k1, k2, k3) such that it has FNL = 1. Like the estimator, this requires
only O(nmax × l3max) operations for every realization of new initial conditions, as opposed to a brute force approach
which requires l6max. Note also that once the nmax filtered density perturbations

�
d3xeik.xMs(x)Mt}(x) have been

obtained for a given ΦB , they can be applied to an arbitrary number of different shaped bispectra represent by αQn ’s.
We can similarly find a relatively simple and highly efficient expression to compute initial conditions for the trispec-

trum ΦT . Following ref. [11], the primordial trispectrum T (k1, k2, k3, µ, ν) represented and expanded using wavenum-
ber qr(k) and angle Pu(µ) modes as in (??), the trispectrum contribution to Φ becomes

ΦT (k) =
�

d3k
�

(2π)3
d3k

��

(2π)3
d3k

���

(2π)3
(2π)3δ(k + k

�
+ k

��
+ k

���
)T (k,k

�
,k

��
,k

���
)ΦG(k

�
) .ΦG(k

��
)ΦG(k

���
)

P (k�)P (k��)P (k���)
(33)

=
�

nl1l2

ᾱQnl1l2

(4π)2

(2l1 + 1)(2l2 + 1)

�

m1m2

Yl1m1(k̂)Yl2m2(k̂)qr(k)
�

d3xeik.xMm1∗
sl1

(x)Mt(x)Mm2∗
ul2

(x), (34)

where the filtered density perturbations Mm1∗
sl1

and Mt are as in the earlier expression for βnl1l2 except for the
replacement of δobs

k with ΦG(k). We have shown in ref. [11] that the bispectrum (31) and trispectrum (33) contributions
are independent and do not influence each other.

For the particular case that the trispectrum is independent of the angles µ, ν (or diagonals K1, K2) the decompo-
sition is somewhat simpler:

ΦT (k) =
�

n

ᾱQnqr(k)
�

d3xeik.xMs(x)Mt(x)Mu(x) . (35)

This applies to many cases in the literature, including constant, local and equilateral models. This simplification will
also apply to initial conditions with non-diagonal quadspectra (??). The expression for quadspectrum perturbation
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accurate representation. As an example, even the pathological local model with diverging squeezed states requires
only nmax = 20 for the expansion (24) to achieve a 95% correlation with the primordial shape. It is clear that there
is no inherent impediment to direct estimation and evaluation of trispectra from survey data of adequate quality.
This separable methodology can be applied to correlators beyond the trispectrum, such as the quadspectrum

Q̃(k1,k2,k3,k4,k5) defined from

〈δk1
δk2

δk3
δk4

δk5
〉 = (2π)3δ(k1 + k2 + k3 + k4 + k5)Q̃(k1,k2,k3,k4,k5) . (31)

For simplicity, however, we restrict attention here to quadspectra that are non-diagonal, depending only on the
wavenumbers k1, . . . , k5, that is, Q̃(k1,k2,k3,k4,k5) = Q̃(k1, k2, k3, k4, k5). The expectation value of the quadspec-
trum estimator is then given by

〈E〉 =
V

(2π)3

∫
(

Π5
i=1

d3ki

(2π)3

)

(2π)6δ(k1 + k2 + k3 + k4 + k5)Q̃2(k1, k2, k3, k4, k5)

P (k1)P (k2)P (k3)P (k4)P (k5)

=
V

(2π3)3

∫

dk1dk2dk3dk4dk5(k1k2k3k4k5)
2

(
∫

dxx2j0(k1x)j0(k2x)j0(k3x)j0(k4x)j0(k5x)

)

×
Q̃2(k1, k2, k3, k4, k5)

P (k1)P (k2)P (k3)P (k4)P (k5)
, (32)

where the integral over the five spherical Bessel functions serves also to define the allowed quadspectrum
domain VQ. The expression (32) may be used to derive a weight to decompose the quadspectrum in

the form
[

Π5
i=1v(ki)/

√

P (ki)
]

Q̃(k1, k2, k3, k4, k5) =
∑

n αnQn(k1, k2, k3, k4, k5) where n ↔ {r, s, t, u, v} and

Qn(k1, k2, k3, k4, k5) = q{r(k1)qs(k2)qt(k3)qu(k4)qv}(k5), and where imposing scale invariance sets v(k) = k9/10. The
resulting separable estimator is directly analogous to that for the non-diagonal trispectrum (30), but for brevity we
will only discuss initial conditions with a non-trivial quadspectrum.

IV. EFFICIENT GENERATION OF ARBITRARY NON-GAUSSIAN INITIAL CONDITIONS

The generation of non-Gaussian initial conditions for N -body simulations with a given primordial bispectrum has
been achieved to date only for bispectra which have a simple separable form (see, e.g., [15–18]). For N -body codes
to efficiently produce non-Gaussian initial conditions for an arbitrary non-separable bispectrum, will require a well-
behaved separable mode decomposition, as achieved for CMB map simulations in ref. [1]. However, we can do even
better by simulating initial data given both an arbitrary bispectrum and trispectrum, as shown for the CMB in ref. [3].
As we have discussed already, this is of particular interest for measurements of the large-scale structure bispectrum,
because of nonlinear contributions expected from the trispectrum. We describe the non-Gaussian primordial potential
perturbation as

Φ = ΦG +
1

6
FNLΦ

B +
1

24
τNLΦ

T , (33)

where ΦG is a Gaussian random field with the required power spectrum P (k). Following ref. [1] for the primordial
bispectrum B(k1, k2, k3) with separable expansion (11), the bispectrum contribution to the primordial perturbation
Φ becomes simply

ΦB(k) =

∫

d3k
′

(2π)3
d3k

′′

(2π)3
(2π)3δ(k+ k

′

+ k
′′

)B(k, k
′

, k
′′

)ΦG(k
′

)ΦG(k
′′

)

P (k′)P (k′′)
(34)

=
∑

n

αn

√

P (k)

k
qr(k)

∫

d3xeik.xMs(x)Mt(x), (35)

where the filtered density perturbations Ms(x) are as defined previously in (14) for the bispectrum estimator (12)
except for the replacement of δobs

k
with ΦG(k). (We note that the bispectrum algorithm in ref. [1] used here is a

generalization of the CMB bispectrum algorithm presented in ref. [19].) Of course, we normalise B(k1, k2, k3) such
that it has FNL = 1. Like the estimator, this requires only O(nmax × l3max) operations for every realization of new
initial conditions, as opposed to a brute force approach which requires l6max. Note also that once the nmax filtered

ΦB(k) =
�

d3k
�

(2π)3
d3k

��

(2π)3
(2π)3δ(k + k

�
+ k

��
)B(k, k

�
, k

��
)ΦG(k

�
)ΦG(k

��
)

P (k�)P (k��)
(16)

ΦB(k) =
�

d3k
�

(2π)3
d3k

��

(2π)3
(2π)3δ(k + k

�
+ k

��
)B(k, k

�
, k

��
)ΦG(k

�
)ΦG(k

��
)

P (k�)P (k��)
(17)

B ≈ BG + FNLBNG (18)

B ≈ BG + FNLBNG (19)

E =
1

NNL2

�
αNL

n βNL
n (20)

E =
1

NNL2

�
αNL

n βNL
n (21)

αNL
n = αn − ᾱG

n , βNL
n = βn − ᾱG

n , NNL2
=

�
αNL

n
2

(22)

αNL
n = αn − ᾱG

n , βNL
n = βn − ᾱG

n , NNL2
=

�
αNL

n
2

(23)

E(FNL) =
�

(αn(FNL)− βn)2 (24)

E(FNL) =
�

(βn − αn(FNL))2 (25)

P (k) P (k�) + P (k�) P (k��) + P (k) P (k��) (26)
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where the integral over the five spherical Bessel functions serves also to define the allowed quadspectrum domain VQ.
The expression (29) may be used to derive a weight to decompose the quadspectrum in the form Q̃(k1, k2, k3, k4, k5) =�

n αnQn(k1, k2, k3, k4, k5) where n ↔ {r, s, t, u, v} and Qn(k1, k2, k3, k4, k5) = qr(k1)qs(k2)qt(k3)qu(k4)qv(k5). The
resulting separable estimator is directly analogous to that for the nondiagonal trispectrum (28), but for brevity we
will only discuss initial conditions with a nontrivial quadspectrum.

IV. EFFICIENT GENERATION OF ARBITRARY NON-GAUSSIAN INITIAL CONDITIONS

The generation of non-Gaussian initial conditions for N -body simulations with a given primordial bispectrum has
been achieved to date only for bispectra which have a simple separable form (see, e.g., [8? –10]). For N -body codes
to efficiently produce non-Gaussian initial conditions for an arbitrary non-separable bispectrum, will requires a well-
behaved separable mode decomposition, as achieved for CMB map simulations in ref. [? ]. However, we can do even
better by simulating initial data given both an arbitrary bispectrum and trispectrum, as shown for the CMB in ref. [11].
As we have discussed already, this is of particular interest for measurements of the large-scale structure bispectrum,
because of nonlinear contributions expected from the trispectrum. We describe the non-Gaussian primordial potential
perturbation as

Φ =Φ G + FNLΦB + τNLΦT (30)

where ΦG is a Gaussian random field with the required power spectrum P (k). Following ref. [? ] for the primordial
bispectrum B(k1, k2, k3) with separable expansion (??), the bispectrum contribution to the primordial perturbation
Φ becomes simply

ΦB(k) =
�

d3k
�

(2π)3
d3k

��

(2π)3
(2π)3δ(k + k

�
+ k

��
)B(k, k

�
, k

��
)ΦG(k

�
)ΦG(k

��
)

P (k�)P (k��)
, (31)

=
�

n

αn

�
P (k)

k
q{r(k)

�
d3xeik.xMs(x)Mt}(x), (32)

where the filtered density perturbations Ms(x) are as defined previously in (12) for the bispectrum estimator (??).
(We note that the bispectrum algorithm in ref. [? ] used here is a generalization of the CMB bispectrum algorithm
presented in ref. [? ].) Of course, we normalise B(k1, k2, k3) such that it has FNL = 1. Like the estimator, this requires
only O(nmax × l3max) operations for every realization of new initial conditions, as opposed to a brute force approach
which requires l6max. Note also that once the nmax filtered density perturbations

�
d3xeik.xMs(x)Mt}(x) have been

obtained for a given ΦB , they can be applied to an arbitrary number of different shaped bispectra represent by αQn ’s.
We can similarly find a relatively simple and highly efficient expression to compute initial conditions for the trispec-

trum ΦT . Following ref. [11], the primordial trispectrum T (k1, k2, k3, µ, ν) represented and expanded using wavenum-
ber qr(k) and angle Pu(µ) modes as in (??), the trispectrum contribution to Φ becomes

ΦT (k) =
�

d3k
�

(2π)3
d3k

��

(2π)3
d3k

���

(2π)3
(2π)3δ(k + k

�
+ k

��
+ k

���
)T (k,k

�
,k

��
,k

���
)ΦG(k

�
) .ΦG(k

��
)ΦG(k

���
)

P (k�)P (k��)P (k���)
(33)

=
�

nl1l2

ᾱQnl1l2

(4π)2

(2l1 + 1)(2l2 + 1)

�

m1m2

Yl1m1(k̂)Yl2m2(k̂)qr(k)
�

d3xeik.xMm1∗
sl1

(x)Mt(x)Mm2∗
ul2

(x), (34)

where the filtered density perturbations Mm1∗
sl1

and Mt are as in the earlier expression for βnl1l2 except for the
replacement of δobs

k with ΦG(k). We have shown in ref. [11] that the bispectrum (31) and trispectrum (33) contributions
are independent and do not influence each other.

For the particular case that the trispectrum is independent of the angles µ, ν (or diagonals K1, K2) the decompo-
sition is somewhat simpler:

ΦT (k) =
�

n

ᾱQnqr(k)
�

d3xeik.xMs(x)Mt(x)Mu(x) . (35)

This applies to many cases in the literature, including constant, local and equilateral models. This simplification will
also apply to initial conditions with non-diagonal quadspectra (??). The expression for quadspectrum perturbation
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where the integral over the five spherical Bessel functions serves also to define the allowed quadspectrum domain VQ.
The expression (29) may be used to derive a weight to decompose the quadspectrum in the form Q̃(k1, k2, k3, k4, k5) =�

n αnQn(k1, k2, k3, k4, k5) where n ↔ {r, s, t, u, v} and Qn(k1, k2, k3, k4, k5) = qr(k1)qs(k2)qt(k3)qu(k4)qv(k5). The
resulting separable estimator is directly analogous to that for the nondiagonal trispectrum (28), but for brevity we
will only discuss initial conditions with a nontrivial quadspectrum.

IV. EFFICIENT GENERATION OF ARBITRARY NON-GAUSSIAN INITIAL CONDITIONS

The generation of non-Gaussian initial conditions for N -body simulations with a given primordial bispectrum has
been achieved to date only for bispectra which have a simple separable form (see, e.g., [8? –10]). For N -body codes
to efficiently produce non-Gaussian initial conditions for an arbitrary non-separable bispectrum, will requires a well-
behaved separable mode decomposition, as achieved for CMB map simulations in ref. [? ]. However, we can do even
better by simulating initial data given both an arbitrary bispectrum and trispectrum, as shown for the CMB in ref. [11].
As we have discussed already, this is of particular interest for measurements of the large-scale structure bispectrum,
because of nonlinear contributions expected from the trispectrum. We describe the non-Gaussian primordial potential
perturbation as

Φ =Φ G + FNLΦB + τNLΦT (30)

where ΦG is a Gaussian random field with the required power spectrum P (k). Following ref. [? ] for the primordial
bispectrum B(k1, k2, k3) with separable expansion (??), the bispectrum contribution to the primordial perturbation
Φ becomes simply

ΦB(k) =
�

d3k
�

(2π)3
d3k

��

(2π)3
(2π)3δ(k + k

�
+ k

��
)B(k, k

�
, k

��
)ΦG(k

�
)ΦG(k

��
)

P (k�)P (k��)
, (31)

=
�

n

αn

�
P (k)

k
q{r(k)

�
d3xeik.xMs(x)Mt}(x), (32)

where the filtered density perturbations Ms(x) are as defined previously in (12) for the bispectrum estimator (??).
(We note that the bispectrum algorithm in ref. [? ] used here is a generalization of the CMB bispectrum algorithm
presented in ref. [? ].) Of course, we normalise B(k1, k2, k3) such that it has FNL = 1. Like the estimator, this requires
only O(nmax × l3max) operations for every realization of new initial conditions, as opposed to a brute force approach
which requires l6max. Note also that once the nmax filtered density perturbations

�
d3xeik.xMs(x)Mt}(x) have been

obtained for a given ΦB , they can be applied to an arbitrary number of different shaped bispectra represent by αQn ’s.
We can similarly find a relatively simple and highly efficient expression to compute initial conditions for the trispec-

trum ΦT . Following ref. [11], the primordial trispectrum T (k1, k2, k3, µ, ν) represented and expanded using wavenum-
ber qr(k) and angle Pu(µ) modes as in (??), the trispectrum contribution to Φ becomes

ΦT (k) =
�

d3k
�

(2π)3
d3k

��

(2π)3
d3k

���

(2π)3
(2π)3δ(k + k

�
+ k

��
+ k

���
)T (k,k

�
,k

��
,k

���
)ΦG(k

�
) .ΦG(k

��
)ΦG(k

���
)

P (k�)P (k��)P (k���)
(33)

=
�

nl1l2

ᾱQnl1l2

(4π)2

(2l1 + 1)(2l2 + 1)

�

m1m2

Yl1m1(k̂)Yl2m2(k̂)qr(k)
�

d3xeik.xMm1∗
sl1

(x)Mt(x)Mm2∗
ul2

(x), (34)

where the filtered density perturbations Mm1∗
sl1

and Mt are as in the earlier expression for βnl1l2 except for the
replacement of δobs

k with ΦG(k). We have shown in ref. [11] that the bispectrum (31) and trispectrum (33) contributions
are independent and do not influence each other.

For the particular case that the trispectrum is independent of the angles µ, ν (or diagonals K1, K2) the decompo-
sition is somewhat simpler:

ΦT (k) =
�

n

ᾱQnqr(k)
�

d3xeik.xMs(x)Mt(x)Mu(x) . (35)

This applies to many cases in the literature, including constant, local and equilateral models. This simplification will
also apply to initial conditions with non-diagonal quadspectra (??). The expression for quadspectrum perturbation
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accurate representation. As an example, even the pathological local model with diverging squeezed states requires
only nmax = 20 for the expansion (24) to achieve a 95% correlation with the primordial shape. It is clear that there
is no inherent impediment to direct estimation and evaluation of trispectra from survey data of adequate quality.
This separable methodology can be applied to correlators beyond the trispectrum, such as the quadspectrum

Q̃(k1,k2,k3,k4,k5) defined from

〈δk1
δk2

δk3
δk4

δk5
〉 = (2π)3δ(k1 + k2 + k3 + k4 + k5)Q̃(k1,k2,k3,k4,k5) . (31)

For simplicity, however, we restrict attention here to quadspectra that are non-diagonal, depending only on the
wavenumbers k1, . . . , k5, that is, Q̃(k1,k2,k3,k4,k5) = Q̃(k1, k2, k3, k4, k5). The expectation value of the quadspec-
trum estimator is then given by

〈E〉 =
V

(2π)3

∫
(

Π5
i=1

d3ki

(2π)3

)

(2π)6δ(k1 + k2 + k3 + k4 + k5)Q̃2(k1, k2, k3, k4, k5)

P (k1)P (k2)P (k3)P (k4)P (k5)

=
V

(2π3)3

∫

dk1dk2dk3dk4dk5(k1k2k3k4k5)
2

(
∫

dxx2j0(k1x)j0(k2x)j0(k3x)j0(k4x)j0(k5x)

)

×
Q̃2(k1, k2, k3, k4, k5)

P (k1)P (k2)P (k3)P (k4)P (k5)
, (32)

where the integral over the five spherical Bessel functions serves also to define the allowed quadspectrum
domain VQ. The expression (32) may be used to derive a weight to decompose the quadspectrum in

the form
[

Π5
i=1v(ki)/

√

P (ki)
]

Q̃(k1, k2, k3, k4, k5) =
∑

n αnQn(k1, k2, k3, k4, k5) where n ↔ {r, s, t, u, v} and

Qn(k1, k2, k3, k4, k5) = q{r(k1)qs(k2)qt(k3)qu(k4)qv}(k5), and where imposing scale invariance sets v(k) = k9/10. The
resulting separable estimator is directly analogous to that for the non-diagonal trispectrum (30), but for brevity we
will only discuss initial conditions with a non-trivial quadspectrum.

IV. EFFICIENT GENERATION OF ARBITRARY NON-GAUSSIAN INITIAL CONDITIONS

The generation of non-Gaussian initial conditions for N -body simulations with a given primordial bispectrum has
been achieved to date only for bispectra which have a simple separable form (see, e.g., [15–18]). For N -body codes
to efficiently produce non-Gaussian initial conditions for an arbitrary non-separable bispectrum, will require a well-
behaved separable mode decomposition, as achieved for CMB map simulations in ref. [1]. However, we can do even
better by simulating initial data given both an arbitrary bispectrum and trispectrum, as shown for the CMB in ref. [3].
As we have discussed already, this is of particular interest for measurements of the large-scale structure bispectrum,
because of nonlinear contributions expected from the trispectrum. We describe the non-Gaussian primordial potential
perturbation as

Φ = ΦG +
1

6
FNLΦ

B +
1

24
τNLΦ

T , (33)

where ΦG is a Gaussian random field with the required power spectrum P (k). Following ref. [1] for the primordial
bispectrum B(k1, k2, k3) with separable expansion (11), the bispectrum contribution to the primordial perturbation
Φ becomes simply

ΦB(k) =

∫

d3k
′

(2π)3
d3k

′′

(2π)3
(2π)3δ(k+ k

′

+ k
′′

)B(k, k
′

, k
′′

)ΦG(k
′

)ΦG(k
′′

)

P (k′)P (k′′)
(34)

=
∑

n

αn

√

P (k)

k
qr(k)

∫

d3xeik.xMs(x)Mt(x), (35)

where the filtered density perturbations Ms(x) are as defined previously in (14) for the bispectrum estimator (12)
except for the replacement of δobs

k
with ΦG(k). (We note that the bispectrum algorithm in ref. [1] used here is a

generalization of the CMB bispectrum algorithm presented in ref. [19].) Of course, we normalise B(k1, k2, k3) such
that it has FNL = 1. Like the estimator, this requires only O(nmax × l3max) operations for every realization of new
initial conditions, as opposed to a brute force approach which requires l6max. Note also that once the nmax filtered

ΦB(k) =
�

d3k
�

(2π)3
d3k

��

(2π)3
(2π)3δ(k + k

�
+ k

��
)B(k, k

�
, k

��
)ΦG(k

�
)ΦG(k

��
)

P (k�)P (k��)
(16)

ΦB(k) =
�

d3k
�

(2π)3
d3k

��

(2π)3
(2π)3δ(k + k

�
+ k

��
)B(k, k

�
, k

��
)ΦG(k

�
)ΦG(k

��
)

P (k�)P (k��)
(17)

B ≈ BG + FNLBNG (18)

B ≈ BG + FNLBNG (19)

E =
1

NNL2

�
αNL

n βNL
n (20)

E =
1

NNL2

�
αNL

n βNL
n (21)

αNL
n = αn − ᾱG

n , βNL
n = βn − ᾱG

n , NNL2
=

�
αNL

n
2

(22)

αNL
n = αn − ᾱG

n , βNL
n = βn − ᾱG

n , NNL2
=

�
αNL

n
2

(23)

E(FNL) =
�

(αn(FNL)− βn)2 (24)

E(FNL) =
�

(βn − αn(FNL))2 (25)

P (k) P (k�) + P (k�) P (k��) + P (k) P (k��) (26)
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where the integral over the five spherical Bessel functions serves also to define the allowed quadspectrum domain VQ.
The expression (29) may be used to derive a weight to decompose the quadspectrum in the form Q̃(k1, k2, k3, k4, k5) =�

n αnQn(k1, k2, k3, k4, k5) where n ↔ {r, s, t, u, v} and Qn(k1, k2, k3, k4, k5) = qr(k1)qs(k2)qt(k3)qu(k4)qv(k5). The
resulting separable estimator is directly analogous to that for the nondiagonal trispectrum (28), but for brevity we
will only discuss initial conditions with a nontrivial quadspectrum.

IV. EFFICIENT GENERATION OF ARBITRARY NON-GAUSSIAN INITIAL CONDITIONS

The generation of non-Gaussian initial conditions for N -body simulations with a given primordial bispectrum has
been achieved to date only for bispectra which have a simple separable form (see, e.g., [8? –10]). For N -body codes
to efficiently produce non-Gaussian initial conditions for an arbitrary non-separable bispectrum, will requires a well-
behaved separable mode decomposition, as achieved for CMB map simulations in ref. [? ]. However, we can do even
better by simulating initial data given both an arbitrary bispectrum and trispectrum, as shown for the CMB in ref. [11].
As we have discussed already, this is of particular interest for measurements of the large-scale structure bispectrum,
because of nonlinear contributions expected from the trispectrum. We describe the non-Gaussian primordial potential
perturbation as

Φ =Φ G + FNLΦB + τNLΦT (30)

where ΦG is a Gaussian random field with the required power spectrum P (k). Following ref. [? ] for the primordial
bispectrum B(k1, k2, k3) with separable expansion (??), the bispectrum contribution to the primordial perturbation
Φ becomes simply

ΦB(k) =
�

d3k
�

(2π)3
d3k

��

(2π)3
(2π)3δ(k + k

�
+ k

��
)B(k, k

�
, k

��
)ΦG(k

�
)ΦG(k

��
)

P (k�)P (k��)
, (31)

=
�

n

αn

�
P (k)

k
q{r(k)

�
d3xeik.xMs(x)Mt}(x), (32)

where the filtered density perturbations Ms(x) are as defined previously in (12) for the bispectrum estimator (??).
(We note that the bispectrum algorithm in ref. [? ] used here is a generalization of the CMB bispectrum algorithm
presented in ref. [? ].) Of course, we normalise B(k1, k2, k3) such that it has FNL = 1. Like the estimator, this requires
only O(nmax × l3max) operations for every realization of new initial conditions, as opposed to a brute force approach
which requires l6max. Note also that once the nmax filtered density perturbations

�
d3xeik.xMs(x)Mt}(x) have been

obtained for a given ΦB , they can be applied to an arbitrary number of different shaped bispectra represent by αQn ’s.
We can similarly find a relatively simple and highly efficient expression to compute initial conditions for the trispec-

trum ΦT . Following ref. [11], the primordial trispectrum T (k1, k2, k3, µ, ν) represented and expanded using wavenum-
ber qr(k) and angle Pu(µ) modes as in (??), the trispectrum contribution to Φ becomes

ΦT (k) =
�

d3k
�

(2π)3
d3k

��

(2π)3
d3k

���

(2π)3
(2π)3δ(k + k

�
+ k

��
+ k

���
)T (k,k

�
,k

��
,k

���
)ΦG(k

�
) .ΦG(k

��
)ΦG(k

���
)

P (k�)P (k��)P (k���)
(33)

=
�

nl1l2

ᾱQnl1l2

(4π)2

(2l1 + 1)(2l2 + 1)

�

m1m2

Yl1m1(k̂)Yl2m2(k̂)qr(k)
�

d3xeik.xMm1∗
sl1

(x)Mt(x)Mm2∗
ul2

(x), (34)

where the filtered density perturbations Mm1∗
sl1

and Mt are as in the earlier expression for βnl1l2 except for the
replacement of δobs

k with ΦG(k). We have shown in ref. [11] that the bispectrum (31) and trispectrum (33) contributions
are independent and do not influence each other.

For the particular case that the trispectrum is independent of the angles µ, ν (or diagonals K1, K2) the decompo-
sition is somewhat simpler:

ΦT (k) =
�

n

ᾱQnqr(k)
�

d3xeik.xMs(x)Mt(x)Mu(x) . (35)

This applies to many cases in the literature, including constant, local and equilateral models. This simplification will
also apply to initial conditions with non-diagonal quadspectra (??). The expression for quadspectrum perturbation
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